Physics, asked by abhinav283604, 1 month ago

An object of size 3cm is placed in front of a spherical mirror. A real, inverted image of size 3 cm is obtained on a screen which is placed at 20cm from the mirror. Find focal length of the mirror.​

Answers

Answered by Okhey
9

\large{\underline{\underline{ \bf{⎆Question:-}}}}

  • An object of size 3cm is placed in front of a spherical mirror. A real, inverted image of size 3 cm is obtained on a screen which is placed at 20cm from the mirror. Find focal length of the mirror.

_____________________________

\large{\underline{\underline{ \bf{♂Solution:-}}}}

\underline{ \boxed{ \sf{➥Gìven }}}

_____________________________

  • Object size (h) : 3 cm
  • Image size (h') : 3 cm
  • Image distance (v) : 20 cm
  • The mirror is spherical .
  • Image is real .
  • Image is inverted .

_____________________________

\underline{ \boxed{ \sf{➥Let }}}

  • Object distance = u

_____________________________

\small{\underline{\underline{ \bf{ᗒTo \: find :-}}}}

  • Focal length (L) of the mirror

_____________________________

\huge\underline{\overline{\mid{\bold{\bold{⤞Here}}\mid}}}

_____________________________

\small{\underline{\underline{ \bf{⤞Mirror \: Formula :-}}}}

\underline{ \boxed{ \sf{ ✰ \frac{1}{f} =  \frac{1}{v}  +  \frac{1}{u}   }}}

_____________________________

\small{\underline{\underline{ \bf{ ●Magnification :-}}}}

\underline{ \boxed{ \sf{ ✰ \frac{h'}{h} =  \frac{- v}{ \:  \:  \:  \: u}     }}}

_____________________________

Putting the values of h' , h and v :

\longmapsto  \frac{3}{3}  \:  =  \:  \frac{ - 20}{ \:  \:  \:  \:  \: u}

 \longmapsto  u\:  =  \:   + 20 ( Sign  \:  \: convention )

_____________________________

Putting the values of v and u in mirror formula :

\longmapsto \frac{1}{f} =  \frac{1}{v}  +  \frac{1}{u}

\longmapsto \frac{1}{f} =  \frac{1}{20}  +  \frac{ \:  \:  1}{  20}

\longmapsto \frac{1}{f} =   \frac{1 + 1}{20}

\longmapsto \frac{1}{f} =   \frac{2}{20}

\longmapsto \frac{1}{f} =   \frac{1}{10}

\longmapsto f \:  =  \: 10 \: cm

_____________________________

  • Hence the focal length is 10 cm .
Similar questions