Physics, asked by GurJas3765, 11 months ago

An object of size 5 cm is placed at a distance of 25 cm from the pole of a concave mirror of radius of curvature 30 cm. Calculte the distance and size. Also tell the nature of the image

Answers

Answered by sourya1794
25

\sf\star\bold\red{\underline{{QUESTION:-}}}

An object of size 5 cm is placed at a distance of 25 cm from the pole of a concave mirror of radius of curvature 30 cm. Calculate the distance and size. Also tell the nature of the image.

\sf\star\bold\green{\underline{{GIVEN:-}}}

  • \sf\: Object\:size\:(h)\:=5cm

  • \sf\: Object\: distance\:(u)\:=-25cm

  • \sf\: Radius\:of\: curvature\:(R)\:=-30cm [R is negative for a concave mirror]

\sf\therefore\:Focal\: Length\:=\dfrac{R}{2}

\sf\implies\:f=\dfrac{-30}{2}

\sf\implies\:f=-15cm

\sf\star\bold\orange{\underline{{SOLUTION:-}}}

\sf\boxed\star\pink{\underline{\underline{{{\bold\:Using\:the\:mirror\: formula:-}}}}}

\sf\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}

so, we have

\sf\implies\dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{u}

\sf\implies\dfrac{1}{v}=\dfrac{1}{-15}-\dfrac{1}{-25}

\sf\implies\dfrac{1}{v}=\dfrac{-5+3}{75}

\sf\implies\dfrac{1}{v}=\dfrac{-2}{75}

\sf\implies\:v=-37.5cm

\sf\pink{{magnification\:(m)}}=\dfrac{h'}{h}=-\dfrac{v}{u}

\sf\therefore\:Image\:Size\:,h'=-\dfrac{vh}{u}

\sf\implies\:h'=-\dfrac{(-37.5cm)(5.0cm)}{(-25cm)}

\sf\green{{\implies\:h'=-7.5cm}}

\sf\therefore\: As v is negative so, a real ,inverted image of height is 7.5cm is formed at a distance of 37.5cm in front of the mirror.

Similar questions