Physics, asked by muzamilseh126, 10 months ago

an object of size 5 cm is placed in front of a concave mirror at a distance of 20cm whose focal length is 10 centimetre find the position nature and size of image​

Answers

Answered by Anonymous
120

GiveN :

  • Object Height \sf{(H_o)\ =\ 5\ cm}
  • Object Distance \sf{(u)\ =\ -20\ cm}
  • Focal length \sf{(f)\ =\ -10\ cm}

To FinD :

  • Nature, Position, Size of image

SolutioN :

Use Mirror Formula :

\implies {\rm{\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}} \\ \\ \\ \implies \rm{\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u}} \\ \\ \\ \implies \rm{\dfrac{1}{v} = \dfrac{-1}{10} - \bigg( \dfrac{-1}{20} \bigg) } \\ \\ \\ \implies \rm{\dfrac{1}{v} = \dfrac{-1}{10} + \dfrac{1}{20}} \\ \\ \\ \implies \rm{\dfrac{1}{v} = \dfrac{-2 + 1}{20}} \\ \\ \\ \implies \rm{\dfrac{1}{v} = \dfrac{-1}{20}} \\ \\ \\ \large {\implies{\boxed{ \sf{v \: = \: -20 \: cm}}}}

____________________

Now, use formula for magnification :

\implies \rm{m = \dfrac{-v}{u} = \dfrac{H'}{H_o}} \\ \\ \\ \implies \rm{\dfrac{-(-20)}{-20} = \dfrac{H'}{5}} \\ \\ \\ \implies \rm{\dfrac{20}{-20} = \dfrac{H'}{5}} \\ \\ \\ \implies \rm{-1 = \dfrac{H'}{5}} \\ \\ \\ \implies \rm{H' = 5 \times -1} \\ \\ \\ \large {\implies{\boxed{\sf{H' = -5 \: cm}}}}

____________________

\bullet \: \: \: \: \rm{Nature\ of\ image\ is\ Real\ and\ inverted.}

\bullet \: \: \: \: \rm{Image\ is\ placed\ at\ distance\ of\ -20\ cm\ from\ mirror.}

\bullet \: \: \: \: \rm{Height\ of\ image\ is\ -5\ cm.}

Answered by MissSlayer
13

In this question We used two Formula First one is mirror formula

1/f = 1/v + 1/u

Here f is focal length , v is image distance and u is object distance.

_______________

Second one is Formula for magnification of image

H'/Ho = -v/u

Here H' is height of image , Ho is height of object .

Thanks :)

Attachments:
Similar questions