Physics, asked by aishwaryagupta05, 4 months ago

An object of size 5cm is placed at a distance 25cm from a convex mirror of focal length 75cm.Find
position, size and nature of the image formed.

Answers

Answered by MystícPhoeníx
57

Given:-

  • Height of object ,ho = 5cm

  • Object distance ,u = -25 cm

  • Focal length ,f = 75 cm

  • Types of Mirror = Convex Mirror

To Find:-

  • Position , Size and Nature of the image formed

Solution:-

Firstly we calculate the image distance.

Using mirror formula

• 1/v + 1/u = 1/f

where,

v is the Image Position

u is the object distance

f is the focal length

Substitute the value we get

→ 1/v + 1/(-25) = 1/75

→ 1/v -1/25 = 1/75

→ 1/v = 1/75 +1/25

→ 1/v =1+3 /75

→ 1/v = 4/75

→ v = 75/4

→ v = 18.75 cm

Therefore, the image distance is 18.75 cm.

Now, Calculating the Height of image. Using Magnification Formula

m = hi/ho = -v/u

Substitute the value we get

→ hi/5 = -75/5/(-25)

→ hi/5 = 75/5/25

→ hi/5 = 3/5

→ hi = 15/5

→ hi = 3 cm

Therefore,the image height is 3 cm and the image formed is smaller than the object .

Nature of Image :- image formed is Virtual and erect.

Answered by tarracharan
2

Answer:-

➪ The position of image, v = \boxed{\tt{\red{+18.75\:cm}}}

➪ Size of the image, \sf{h_i} = \boxed{\tt{\red{3.75\:cm}}}

➪ Nature of the image - Virtual and erect.

\:

Given :-

• Height of object (\sf{h_o}) = 5 cm

• Object distance (u) = - 25 cm

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(∵ Left to pole)

• Focal length (f) = + 75 cm

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(∵ Right to pole)

• It is a convex mirror.

\:

To find :-

• The position of image, v = ?

• Size of the image, \sf{h_i} = ?

• Nature of the image.

\:

Formula used :-

\boxed{\sf{\dfrac{1}{f} = \dfrac{1}{u} +\dfrac{1}{v}}}

\boxed{\sf{Magnification= \dfrac{h_i}{h_o}= -\dfrac{v}{u}}}

\:

Solution :-

\sf{⇒\dfrac{1}{f} = \dfrac{1}{u} +\dfrac{1}{v}}

Substituting the known values in the above equation we get,

\sf{⇒\dfrac{1}{75} = -\dfrac{1}{25} +\dfrac{1}{v}}

\sf{⇒\dfrac{1}{v} = \dfrac{1}{75} +\dfrac{1}{25}}

\sf{⇒\dfrac{1}{v} = \dfrac{1}{75} +\dfrac{1}{25}}

\sf{⇒\dfrac{1}{v} = \dfrac{1+3}{75}}

\sf{⇒v = } \sf{\red{+ 18.75\:cm}}

\:

\sf{⇒Magnification= \dfrac{h_i}{h_o}= -\dfrac{v}{u}}

From this,

\sf{⇒ \dfrac{h_i}{h_o}= -\dfrac{v}{u}}

\sf{⇒ \dfrac{h_i}{5}= -\dfrac{18.75}{(-25)}}

\sf{⇒ h_i= \dfrac{93.75}{25}}

\sf{⇒ h_i= }\sf{\red{3.75\:cm}}

Attachments:
Similar questions