Science, asked by mysterio23, 3 months ago

an object of size 70 cm is placed at 27 cm in front of a concave mirror of focal length 18 cm at what distance from a mirror should a screen be placed so that a sharp focused image can be obtained​

Answers

Answered by Qᴜɪɴɴ
12

Given:

  • Size of object = Ho = 70cm
  • Object distance = u = -27cm
  • Focal length = f = -18cm

━━━━━━━━━━━━━━━

Need to find:

  • Distance at which the screen will be placed from the mirror = v = ?

━━━━━━━━━━━━━━━

Solution:-

We know,

 \dfrac{1}{v}  +  \dfrac{1}{u}  =  \dfrac{1}{f}

 \implies \dfrac{1}{v}  +  \dfrac{1}{-27}  =  \ffrac{1}{-18}

\implies  \dfrac{1}{v}  =  \dfrac{1}{-18}  \dfrac{1}{27}

 \implies  \dfrac{1}{v}  =  \dfrac{1}{27}   - \dfrac{1}{18}

\red{\bold{\boxed {\large{\implies  \dfrac{1}{v}  =  - 54 cm}}}}

 \therefore The screen should be placed 54cm infront of the mirror.

The image will be real.

━━━━━━━━━━━━━━━

\setlength{\unitlength}{25} \begin{picture}(10,10)\thicklines\qbezier(7,6)(8,3)(7,1) \put(1,3.5){\line(1,0){6.5}} \put(1,3.5){\line(1,0){6.5}}\put(4.5,3.5){\vector(0,1){1}}\put(4.5,4.5){\vector(1,0){1}}\put(4.5,4.5){\line(1,0){2.9}}\put(4.5,4.5){\line(1, - 1){2.8}}\put(7.4,4.5){\line( - 2, - 1){6.5}}\put(4.5,4.5){\vector(1, - 1){0.7}}\put(4.5,4.5){\vector(1, - 1){2}}\put(7.4,4.5){\vector( - 2, - 1){1}}\put(7.4,4.5){\vector( - 2, - 1){4}}\put(7.3,1.7){\line( - 1,0){5.5}}\put(1.8,3.5){\vector(0, - 1){1.8}}\put(7.3,1.7){\vector( - 1,0){3}}\put(4.4,3.1){$ \tt B $ }\put(3,3.1){$ \tt C $ }\put(1.75,3.75){$ \tt B' $ }\put(1.75,1.2){$ \tt A' $ }\put(5.25,3.1){$ \tt F $ }\put(4.4,4.75){$ \tt A $ }\put(7.5,4.7){$ \tt L $ }\put(7.7,3.25){$ \tt P $ }\put(7.4,1.5){$ \tt N $ }\put(3.125,3.5){\circle*{0.15}}\put(5.4,3.5){\circle*{0.15}}\put(7.1,5.7){\line(1, - 1){0.5}}\put(7.3,4.8){\line(1, - 1){0.5}}\put(7.4,4.1){\line(1, - 1){0.5}}\put(7.1,1.3){\line(1, - 1){0.5}}\put(7.4,2.4){\line(1, - 1){0.5}}\put(7.5,3){\line(1, - 1){0.5}}\end{picture}

Answered by mohnishkrishna05
0

Answer:

mark me as brainliest and support me to give more valuable answers

Explanation:

Attachments:
Similar questions
Math, 3 months ago