Physics, asked by Aswad4974, 11 months ago

An object rotates in circular path of radius 5 m. calculate it's distance and displacement after completing 2 and half round

Answers

Answered by BrainlyConqueror0901
34

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:travel=78.5\:m}}}

\green{\tt{\therefore{Displacement=10\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Radius = 5 \: m \\  \\  \tt:  \implies Revolution = 2 \: and \: half \: round \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Distance \: travel = ? \\  \\ \tt:  \implies Displacement= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Circumference \: of \: path = 2\pi r \\  \\  \tt:  \implies Circumference \: of \: path =2 \times 3.14\times 5 \\  \\  \green{\tt:  \implies Circumference \: of \: path =31.4 \: m} \\  \\  \bold{For \: Distance :  }\\  \tt:  \implies Distance \: travel = 31.4 \times 2.5 \\  \\  \green{\tt:  \implies Distance \: travel =78.5 \: m} \\  \\  \bold{For \: Displacement : } \\ \tt:  \implies Displacement = 2 \: radius \\  \\ \tt:  \implies Displacement = 2 \times 5 \\  \\  \green{\tt:  \implies Displacement = 10 \: m}

Answered by Anonymous
22

AnswEr :

  • Distance = 25π m
  • Displacement = 10 m

From the Question,

  • The radius of the circle (r) = 5 m

  • The particle completes 2½ rounds on the circular path

To finD : Distance and Displacement

Now,

Distance covered by the object would be : 2 of Circumference + ½ of Circumference

Thus,D = 2(2πr) + ½(2πr)

→ D = 5πr

→ D = 5(5)π

→ D = 25π m

Also,

Displacement of the object : Diameter

Thus,

S = 2r

→ S = 2(5)

→ S = 10 m

Similar questions