Physics, asked by p24032006, 2 months ago

An object thrown vertically upwards reaches a height of 320 m. What was its initial velocity? (Assume g = 10 m/s2) *

100 m/s

0 m/s

80 m/s

90 m/s

Answers

Answered by Yuseong
7

Answer:

80 m/s

Explanation:

As per the provided information in he given question, we have :

  • Final velocity (v) = 0 m/s [It has been thrown vertically upwards.]
  • Height attained (h) = 320 m
  • Acceleration due to gravity (g) = – 10 m/s² [Opposite direction to the direction in which gravitation acts]

Now, as we know that,

  \bigstar \quad \underline{\boxed{ \pmb{\frak{v^2 - u^2 = 2gh} } }} \\

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height

  \longrightarrow \sf{\quad { (0)^2 - u^2 = 2 \times (-10) \times 320 }} \\

  \longrightarrow \sf{\quad { - u^2 = -20 \times 320 }} \\

  \longrightarrow \sf{\quad { - u^2 = -6400 }} \\

Negative sign will be cancelled from both sides.

  \longrightarrow \sf{\quad { u^2 = 6400 }} \\

  \longrightarrow \sf{\quad { u= \sqrt{6400} }} \\

  \longrightarrow \quad \underline{\boxed{ \pmb{\frak{u =80 } }\; \pmb{\frak{m}} \: \pmb{\frak{s}}^{\pmb{\frak{-1}}} }} \\

Therefore, initial velocity is 80 m/s.

⠀⠀⠀⠀⠀_________________⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

More Information :

Equations of motion for fréély falling bodies :

\boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + gt \quad}}  \\  \\  \pmb{\sf{ \quad \:  h= ut}} +  \cfrac{\pmb{\sf{ 1}}}{\pmb{\sf{ 2}}}\pmb{\sf{ g}}{\pmb{\sf{ t}}}^{\pmb{\sf{ 2}}}  \quad \: \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2gh \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height
  • t denotes time
Similar questions