Physics, asked by sy62907, 4 months ago

An object undergoes an acceleration of 8m/sec² starting from rest find distance traveld in 1 sec​

Answers

Answered by Anonymous
64

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{Acceleration\: (a) = 8 \:m/s^{2}}

\:\:\:\:\bullet\:\:\:\sf{Initial\: velocity \:(u) = 0 \:m/s}

\:\:\:\:\bullet\:\:\:\sf{Time \:(t) = 1\: seconds}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{Distance \:travelled \:(s)}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

Using 2nd equation of motion

\\

\dashrightarrow\:\: \sf{s = ut + \frac{1}{2}a {t}^{2} }

\\

\dashrightarrow\:\: \sf{0 \times 1+ \frac{1}{  \cancel2} \times \cancel8 \times 1\times 1}

\\

\dashrightarrow\:\: \sf{s =  4\times 1 \times 1}

\\

\dashrightarrow\:\: {\boxed{\sf{s = 4\:m}}}

\\

{\mathfrak{\underline{\purple{\:\:\: Additional\: Information:-\:\:\:}}}} \\ \\

Equations of motion

\\

\boxed{</p><p></p><p>\begin{minipage}{3 cm}$\\</p><p></p><p>\sf{\:\bullet\:\:v = u +at} \\ \\</p><p></p><p>\sf{\:\bullet\:\:s = ut + \frac{1}{2}\:at^{2} }\\ \\</p><p></p><p>\sf{\:\bullet\:\:v^{2} = u^{2} + 2as}\\ \\</p><p>\sf{\:\bullet\:\:s = \dfrac{1}{2} (u + v)t}\\$</p><p></p><p>\end{minipage}</p><p></p><p>}

\\

\sf{Where,}

\:\:\:\:\bullet\:\:\:\textsf{v = Final velocity}

\:\:\:\:\bullet\:\:\:\textsf{u = Initial velocity}

\:\:\:\:\bullet\:\:\:\textsf{a = Acceleration}

\:\:\:\:\bullet\:\:\:\textsf{s = Distance}

\:\:\:\:\bullet\:\:\:\textsf{t = Time taken}

Answered by sara122
0

Answer:

 \\  \\

❁ ════ ❃•❃ ════ ❁

As per as the provided Question , It is asked to find the distance traveled by an object.

❁ ════ ❃•❃ ════ ❁

 \\  \\

══════◄••❀••►══════

  \large \bigstar\bf  \underline \color{navy}{concept  - \: }  \color{black}\bigstar

An object ( suppose a car ) makes an Acceleration of 8m/sec². It has started from rest , rest is always zero ( rest = 0 ) As Newton’s first law tells that, at rest is just a velocity vector of zero. Time taken is 1 second.

══════◄••❀••►══════

 \\  \\

❁ ════ ❃•❃ ════ ❁

\large \bigstar\bf  \underline \color{navy}{Given - \: }  \color{black}\bigstar

  • Acceleration of an object , a = 8 m/sec²
  • Initial velocity , u = 0
  • Time taken , t = 1 sec

❁ ════ ❃•❃ ════ ❁

 \\  \\

══════◄••❀••►══════

\large \bigstar\bf  \underline \color{navy}{To find - \: }  \color{black}\bigstar

  • Distance traveled , s = ?

══════◄••❀••►══════

 \\  \\

❁ ════ ❃•❃ ════ ❁

\large \bigstar\bf  \underline \color{navy}{Formula\: used  - \: }  \color{black}\bigstar

   \large \dagger\bf \color{orange}{s = ut +  \frac{1}{2} at {}^{2} }  \color{black}\dagger

❁ ════ ❃•❃ ════ ❁

 \\  \\

══════◄••❀••►══════

\large \bigstar\bf  \underline \color{navy}{Solution  - \: }  \color{black}\bigstar

  \\  \sf \color{purple}{ \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: =  &gt;  s = 0 \times 1  +  \frac{1}{2} \times 8 \times (1) {}^{2}  } \\  \sf \green {  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  &gt; s = 0 +  \frac{1}{ \cancel2}    \times \cancel 8 {}^{4}  \times 1} \\ \sf \red{  =  &gt; s = 4 \times 1} \\   \large  \sf {\boxed {\boxed { \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  &gt; s = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}} \\  \\

══════◄••❀••►══════

 \\  \\  \\

❁ ════ ❃•❃ ════ ❁

 \\  \therefore\bf \color{blue}{the \: distance \: traveled \: by \: an \: object \: is \: 4m} \\

❁ ════ ❃•❃ ════ ❁

Similar questions