Math, asked by HEYWORLD6, 2 months ago

an object with initial velocity 4m/s got its velocity tobe 40m/s after a time of 5 seconds. Find the force applied if mass of the object is 2 kg​

Answers

Answered by PainfulLove
26

Given that ,

Initial Velocity [ u ] of the object is 4 m/s.

Final Velocity [ v ] of the object is 40 m /s.

Total Time taken [ t ] is is 5 seconds.

The mass [ m ] of the ball is 2 kg .

Now ,

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\maltese\:\:\bf From \: Second\:Law's \:of \:Newton \:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ F = \dfrac{ m ( v- u ) }{t} }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here F is Applied force , m is the mass, v is the Final velocity, u is the Initial velocity & t is the total time taken.

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad :\implies \sf Force \: Applied\: = \dfrac{ m ( v- u ) }{t} \:\\

\qquad :\implies \sf Force \: Applied\: = \dfrac{ 2 ( 40 - 4 ) }{5} \:\\

\qquad :\implies \sf Force \: Applied\: = \dfrac{ 2 ( 36 ) }{5} \:\\

\qquad :\implies \sf Force \: Applied\: = \dfrac{ 2 \times 36 }{5} \:\\

\qquad :\implies \sf Force \: Applied\: = \dfrac{ 72 }{5} \:\\

\qquad :\implies \sf Force \: Applied\: = \cancel {\dfrac{ 72 }{5}} \:\\

\qquad :\implies \bf Force \: Applied\: = 14.4 \:\\

\qquad:\implies \frak{\underline{\pink{\: Force \: Applied\: = 14.4 \: N \:}} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:force\: Applied \:is\:\bf{14.4 \: N}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions