An observer from the top of a lighthouse 100m high above sea level the angle of depression of ship sailing directly towards it changes from 30 to 60 find the distance travelled by the ship during the period of observation
Answers
Answered by
5
tantheta = AD/AB
tan 60°=100/AB
√3=100/AB
√3AB=100
AB=100/√3----------(1)
tan theta = AD/AC
tan30=100/(AB+BC)
1/√3=100/(AB+BC)
(AB+BC)/√3=100-----------(2)
(1)=(2) so,
(100/√3+BC)/√3=100
(100/3)+(BC/√3)=100
BC/√3=100-100/3
=200/3
BC= 200√3/3
BC= 115.470054m
by SK mathematics
tan 60°=100/AB
√3=100/AB
√3AB=100
AB=100/√3----------(1)
tan theta = AD/AC
tan30=100/(AB+BC)
1/√3=100/(AB+BC)
(AB+BC)/√3=100-----------(2)
(1)=(2) so,
(100/√3+BC)/√3=100
(100/3)+(BC/√3)=100
BC/√3=100-100/3
=200/3
BC= 200√3/3
BC= 115.470054m
by SK mathematics
Attachments:
Answered by
8
QR = 57.735 metre
Now,
QS =173.205 metre
RS = QS - QR
RS = 173.205 - 57.735
RS = 115.47 metre
= 115.47 metre
Attachments:
Similar questions