Math, asked by ssakthiumaviiia, 4 months ago

An oil can is in the form of cylinder
whose radius is 7.7 cm and length is
56 cm. Find the quantity of oil in litres
that can be stored in the can?

Answers

Answered by Anonymous
21

Volume of Cylinder = πr²h

⇒ Volume of Cylinder = π × r² × h

⇒ Volume of Cylinder = 22/7 × r² × h

⇒ Volume of Cylinder = 22/7 × (7.7 cm)² × h

⇒ Volume of Cylinder = 22/7 × (7.7 cm)² × 56 cm

⇒ Volume of Cylinder = 22/7 × 59.29 cm² × 56 cm

⇒ Volume of Cylinder = 22/7 × 59.29 × 56 cm³

⇒ Volume of Cylinder = 10435.04 cm³

⇒ Volume of Cylinder = 10435.04 ml

⇒ Volume of Cylinder = 10.43504 L


BrainlyIAS: Good :) ☆_☆
Answered by SarcasticL0ve
38

\bf GivEn \begin{cases} & \sf{Radius\;of\;cylindrical\;oil\;can,\;r = \bf{7.7\;cm}}  \\ & \sf{Height\;of\;cylindrical\;oil\;can,\;h = \bf{56\;cm}}  \end{cases}\\ \\

Need to find: The quantity of oil in litres that can be stored in the can.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Quantity of oil in that can be stored in can = Volume of oil can

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\

Here,

⠀⠀

  • r = 7.7 cm
  • h = 56 cm

⠀⠀

\setlength{\unitlength}{1.3mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(16,2)(0,32){2}{\sf{\footnotesize 7.7 cm}}\put(14,17.5){\sf{\footnotesize 56 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{Putting\;values\;in\;formula,}}}\\ \\

:\implies\sf Volume_{\;(oil\;can)} = \dfrac{22}{ \cancel{7}} \times 7.7 \times 7.7 \times \cancel{56}\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 22 \times 7.7 \times 7.7 \times 8\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 176 \times 7.7 \times 7.7\\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\;(oil\;can)} = 10435.04</p><p>\;cm^3 }}}}}\;\bigstar\\ \\

\dag\;{\underline{\frak{Quantity\;of\;oil\;in\;Litre,}}}\\ \\

We know that,

⠀⠀

  • 1 Litre = 1000 cm³

⠀⠀

:\implies\sf Volume_{\;(oil\;can)} = 10.43504\;L\\ \\

\therefore Quantity of oil in litres that can be stored in the can is 10.43504 L.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:Formulas\:related\:to\: cylinder\:\bigstar}}} \\  \\

\sf (i)\;Curved\;surface\;area\;of\;cylinder\; = \; \red{2 \pi rh}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Total\;surface\;area\;of\;cylinder\; = \; \purple{2 \pi r(h + r)}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Volume\;of\;cylinder\; = \; \pink{ \pi r^2 h}


BrainlyIAS: Nice :) ❤ ♡_♡
Similar questions