Math, asked by ak0161453, 11 months ago

An open box is 15 cm long .8 cm wide and 10cm high.find the area of the total external surface of the box.​

Answers

Answered by Brâiñlynêha
17

\huge\mathbb{SOLUTION:-}

\sf\underline{\purple{\:\:\: Given:-\:\:\:}}

Dimensions of open cuboidal box is

\sf\bullet Length=15cm \\ \\ \sf\:\bullet Breadth=8cm\\ \\ \sf\bullet Height=10cm

  • Now the T.S.A of cuboid

\bigstar{\boxed{\sf{T.S.A\:of\: cuboid=2(lb+bh+hl)}}}

  • Now for open box

\sf\bullet 2(lb+bh+hl)-lb

\sf\implies 2(15\times 8+8\times 10+10\times 15)-15\times 8\\ \\ \sf\implies  2(120+80+150)-120\\ \\ \sf\implies  2\times 350-120\\ \\ \sf\implies 700-120\\ \\ \sf\implies 580cm{}^{2}

\boxed{\sf{External\: surface\:Area=580cm{}^{2}}}

Answered by BrainlySamaira
11

Answer:

\large\boxed{\sf </p><p>{Surface\: area =580cm^2}}}

______________________________________

\texttt{ Dimension Given}\begin{cases}\sf{L=15 cm} \\ \\ \sf{B=8cm} \\\ \\\sf{H=10cm}\end{cases}

\large\star\underline\textbf{ To Find }

\small\textsf{the area of the total external surface }\\\textsf{of the box.}

\large\star\underline\textsf{Formula used:- }

1.\boxed{\bf 2(lb + bh + h)}

2.\boxed{\bf 2(lb + bh + hl + ) - lb}

\huge\underline\textsf{Explantion:- }

\small\underline\textsf{Now\: do \:with\: 2.formula,}

\leadsto\sf2(15 \times 8 + 8 \times 10 + 10 \times 15) - 15  \times 8

\leadsto\sf2(120 + 80 + 150) - 120

\leadsto\sf 2 \times 350 - 120

\leadsto\sf 700 - 120

\leadsto\sf 580cm ^{2}

Similar questions