Math, asked by anwar9622090452, 11 months ago

an open (without the top lid) cylinder with base radius 10.5cm and height 16cm.find it's total surface area​

Answers

Answered by Brâiñlynêha
36

\huge\mathbb{SOLUTION:-}

\sf\underline{\blue{\:\:\:\:\:\:\:\: Given:-\:\:\:\:\:\:\:\:}}

\sf\:\:\:\: \bullet radius\:of\: cylinder=10.5cm\\ \\ \sf\:\:\:\: \bullet Height\:of\: cylinder=16cm

  • We have to find the T.S.A of cylinder open from top

\boxed{\sf{T.S A\:of\: cylinder=2\pi r(h+r)}}

\bf\underline{\red{\:\:\:\:\:\:\:\: A.T.Q:-\:\:\:\:\:\:\:\:}}

  • This is open from top So

\underline{\star{\sf{T.S.A\:open\:at\:top= 2\pi r(h+r)- \pi r{}^{2}}}}

  • Now first the Value of \sf \pi r{}^{2}

\sf:\implies Area\:of\:Top=\dfrac{22}{\cancel7}\times \cancel{10.5}\times 10.5\\ \\ \sf:\implies Area\:of\:top= 22\times 1.5\times 10.5\\ \\ \sf:\implies Area\:of\:Top=346.5cm{}^{2}

  • Now the T.S.A

\sf:\implies T.S.A=2\times \dfrac{22}{\cancel7}\times \cancel{10.5}(10.5+16)\\ \\ \sf:\implies T.S.A=22\times 1.5\times 26.5\\ \\ \sf:\implies T.S.A=874.5cm{}^{2}

  • So the given cylinder is open from top So it's T.S.A will be

\sf:\implies T.S.A\:of\: cylinder-Area\:of\:Top\\ \\ \sf\implies T.S.A= 2\pi r(h+r)-\pi r{}^{2}\\ \\ \sf:\implies T.S.A= 874.5-346.5\\ \\ \sf:\implies T.S.A= 528cm{}^{2}

\boxed{\sf{T.S.A\:of\:Given\: cylinder= 528cm{}^{2}}}

Answered by rajsingh24
35

\large{\underline{\underline{\mathbf\green{GIVEN\::}}}}

• radius of cylinder = 10.5cm

• height of cylinder = 16cm

\large{\underline{\underline{\mathbf\red{SOLUTION\::}}}}

\implies the cylinder is open from top ---(I)

\implies T.SA of cylinder = 2πr(h+r)

\implies given, this is open from top,

\purple{\boxed{.°. \:T.SA \:of\: cylinder \:= 2πr(h+r) \:= \: πr^2}}

NOW,

\implies T.SA = 2πr(h+r)

\implies 2 × 22/7 ×10.5 (16+10.5)

\implies 22 × 1.5 × 26.5

\implies \red{\boxed{T.SA =874.5cm^2}}

Now,

\implies Area of top = π

\implies 22/7 × 10.5 ×10.5

\implies 22 × 1.5 ×10.5

\implies \green{\boxed{.°. Area\: of \:top =346.5cm^2}}

• According to the (I) statement

\implies T.SA of cylinder - Area of top

\impliesT.SA of cylinder= 2πr(h+r) - πr²

\implies T.SA of cylinder=(874.5 - 346.5)cm²

\implies \orange{\boxed{T.SA\: of \:cylinder= \:528cm^2}}

__________________________

SOME RELATED FORMULAE TO THE CYLINDER.

1. CSA of cylinder = 2πrh

2. volume of cylinder = πr²h

3. TSA of cylinder = 2πr(h+r)

Similar questions