Physics, asked by lalita5409, 1 year ago

An α particle of energy 5Mev is scattered through 180° by a stationary uranium nucleus. The distance of closest approach is of the order of:

Answers

Answered by Anonymous
8

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Closest\:Approach=5.3×{10}^{-12}cm}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Energy (E ) = 5MeV

  • \sf{{e}^{-}=1.6×{10}^{-19}C}

\large\underline\pink{\sf To\:Find: }

  • Closest approch (r) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━

At closest approch all the Kinetic Energy (KE) of the \alpha -particle will be converted into Potential Energy (PE) of the system

i.e. KE = PE

\large{♡}\large{\boxed{\sf {\frac{1}{2}}m{v}^{2}={\frac{1}{4πE_o}}{\frac{q_1q_2}{r}}}}

Here ,

\sf{{\frac{1}{4πE_o}}=9×{10}^{9}}

\large{\sf{\frac{1}{2}}m{v}^{2}=5Mev }

\large{\sf {e}^{-}=1.6×{10}^{-19}C}

On putting value :

\large\implies{\sf 5Mev={\frac{9×{10}^{9}×2e×92e}{r}}}

\large\implies{\sf r={\frac{9×{10}^{9}×2×92×(1.6×{10}^{-19})}{5×{10}^{6}×1.6×{10}^{-19}}}}

\large\implies{\sf r= 5.3×{10}^{-14}m }

Or

\large\implies{\sf r=5.3×{10}^{-12}cm}

\huge\red{♡}\red{\boxed{\sf Closest\:Approach=5.3×{10}^{-12}cm}}

Similar questions