Math, asked by Rajan5837, 1 year ago

An urn contains 2 white and 2 black balls and a second urn contains 2 white and 4 black balls. If one ball is drawn at random from each urn what is the probability that they are of the same color

Answers

Answered by waqarsd
1

Answer:

0.25

Step-by-step explanation:

Let A be the Event of selecting Urn 1 and B be the event of selecting Urn 2

Clearly A and B are Equally Likely Events

P(A)=P(B)=0.5

Now let W be the Event of selecting a white ball

and S be the event of selecting a black ball

Now

Probability of getting White ball from

urn 1 =2/4=0.5 =P(A/W)

urn 2= 2/6=0.33=P(B/W)

Probability of getting Black ball from

urn 1=0.5=P(A/S)

urn 2=0.66=P(B/S)

Let E be the Event of getting balls of same color

P(E)=P(A/W)P(B/W)+P(A/S)P(B/S)

P(E)=0.5*0.33+0.5*0.66

P(E)=1/4=0.25

Hope It Helps

Similar questions