Math, asked by hanumantsharm, 9 months ago

an urn contains 5 red ,2 white,3 black balls.three balls are drawn one by one at random without replacement . find the probability distribution of the number of white balls.

Answers

Answered by MaheswariS
10

\textbf{Given:}

\text{5 red balls, 2 white balls, 3 black balls}

\text{Let X denote the number of white balls when 3 balls are drawn one by one}

\text{Then, X can take the values 0, 1 and 2}

P(X=0)

=\displaystyle\frac{8_{C_3}}{10_{C_3}}

=\displaystyle\frac{\frac{8{\times}7{\times}6}{1{\times}2{\times}3}}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{8{\times}7{\times}6}{10{\times}9{\times}8}

=\displaystyle\frac{7}{5{\times}3}

=\displaystyle\frac{7}{15}

P(X=1)

=\displaystyle\frac{8_{C_2}{\times}2_{C_1}}{10_{C_3}}

=\displaystyle\frac{\frac{8{\times}7}{1{\times}2}(2)}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{7}{5{\times}3}

=\displaystyle\frac{7}{15}

P(X=2)

=\displaystyle\frac{8_{C_1}{\times}2_{C_2}}{10_{C_3}}

=\displaystyle\frac{\8{\times}1}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{1}{15}

\therefore\textbf{The probability distribution of X is}

\begin{array}{|c|c|c|c|}\cline{1-4}x&0&1&2\\\cline{1-4}P(X=x)&\frac{7}{15}&\frac{7}{15}&\frac{1}{15}\\\cline{1-4}\end{array}

Answered by jeevankishorbabu9985
2

Answer:

\textbf{Given:}

:

\text{5 red balls, 2 white balls, 3 black balls}5

 \blue{\text{Let X denote the number of white balls when 3 balls are drawn one by one}}

\text{Then, X can take the values 0, 1 and 2}

 \red{P(X=0)}

=\displaystyle\frac{8_{C_3}}{10_{C_3}}

=\displaystyle\frac{\frac{8{\times}7{\times}6}{1{\times}2{\times}3}}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{8{\times}7{\times}6}{10{\times}9{\times}8}

=\displaystyle\frac{7}{5{\times}3}

=\displaystyle\frac{7}{15}

 \pink{P(X=1)}

</p><p></p><p>=\displaystyle\frac{8_{C_2}{\times}2_{C_1}}{10_{C_3}}

=\displaystyle\frac{\frac{8{\times}7}{1{\times}2}(2)}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{7}{5{\times}3}

=\displaystyle\frac{7}{15}

 \green{P(X=2)}

=\displaystyle\frac{8_{C_1}{\times}2_{C_2}}{10_{C_3}}

=\displaystyle\frac{8{\times}1}{\frac{10{\times}9{\times}8}{1{\times}2{\times}3}}

=\displaystyle\frac{1}{15}

 \color{cyan}\therefore\textbf{The probability distribution of X is}

\begin{gathered}\begin{array}{|c|c|c|c|}\cline{1-4}x&amp;0&amp;1&amp;2\\\cline{1-4}P(X=x)&amp;\frac{7}{15}&amp;\frac{7}{15}&amp;\frac{1}{15}\\{\cline}{1-4}\end{array}\end{gathered} </p><p>1−4x</p><p>1−4P(X=x)</p><p>1−4

Step-by-step explanation:

pray for me to come over

Similar questions