Analyse stopping potential from einstein photoelectric equation
Answers
Under the right circumstances light can be used to push electrons, freeing them from the surface of a solid. This process is called the photoelectric effect (or photoelectric emission or photoemission), a material that can exhibit this phenomena is said to be photoemissive, and the ejected electrons are called photoelectrons; but there is nothing that would distinguish them from other electrons. All electrons are identical to one another in mass, charge, spin, and magnetic moment.
The photoelectric effect was first observed in 1887 by Heinrich Hertz during experiments with a spark gap generator (the earliest device that could be called a radio). In these experiments, sparks generated between two small metal spheres in a transmitter induce sparks that jump between between two different metal spheres in a receiver. Compared to later radio devices, the spark gap generator was notoriously difficult to work with. The air gap would often have to be smaller than a millimeter for a the receiver to reliably reproduce the spark of the transmitter. Hertz found that he could increase the sensitivity of his spark gap device by illuminating it with visible or ultraviolet light. Later studies by J.J. Thomson showed that this increased sensitivity was the result of light pushing on electrons — a particle that he discovered in 1897.
While this is interesting, it is hardly amazing. All forms of electromagnetic radiation transport energy and it is quite easy to imagine this energy being used to push tiny particles of negative charge free from the surface of a metal where they are not all that strongly confined in the first place. The era of modern physics is one of completely unexpected and inexplicable discoveries, however. Subsequent investigations into the photoelectric effect yielded results that did not fit with the classical theory of electromagnetic radiation. When it interacted with electrons, light just didn't behave like it was supposed to. Repairing this tear in theory required more than just a patch. It meant rebuilding a large portion of physics from the ground up.
It was Philipp Lenard, an assistant of Hertz, who performed the earliest, definitive studies of the photoelectric effect. Lenard used metal surfaces that were first cleaned and then held under a vacuum so that the effect might be studied on the metal alone and not be affected by any surface contaminants or oxidation. The metal sample was housed in an evacuated glass tube with a second metal plate mounted at the opposite end. The tube was then positioned or constrained in some manner so that light would only shine on the first metal plate — the one made out of photoemissive material under investigation. Such a tube is called a photocell (formally) or an electric eye (informally). Lenard connected his photocell to a circuit with a variable power supply, voltmeter, and microammeter as shown in the schematic diagram below. He then illuminated the photoemissive surface with light of differing frequencies and intensities.
Photocell, voltmeter, and variable power supply in parallel. Microammeter in series.
Knocking electrons free from the photoemissive plate would give it a slight positive charge. Since the second plate was connected to the first by the wiring of the circuit, it too would become positive, which would then attract the photoelectrons floating freely through the vacuum where they would land and return back to the plate from which they started. Keep in mind that this experiment doesn't create electrons out of light, it just uses the energy in light to push electrons that are already there around the circuit. The photoelectric current generated by this means was quite small, but could be measured with the microammeter (a sensitive galvanometer with a maximum deflection of only a few microamps). It also serves as a measure of the rate at which photoelectrons are leaving the surface of the photoemissive material.