Biology, asked by gouthampalayan90, 1 day ago

Analyse the process and answer the questions

Lactic acid

Glucose Pyruvic acid

Alchohol + co2

a. What is the common term for the process ?

b. Give one eicample of this process form daily life ?​

Answers

Answered by samridhic
2

Answer:

common term- respiration

Explanation:

lactic acid is formed in muscle cells during stenous excersize

alcohol and co2 is formed during respiration of yeast

we utilise this anaerobic form of respiration of yeast in baking cakes, and making wine on large scales

glucose is converted into pyruvic acid in all living organisms to synthesise energy.

Answered by chhavikhanna
2

Answer:

Fermentation and Anaerobic respiration

Explanation:

Main content

Cellular respiration

Fermentation and anaerobic respiration

How cells extract energy from glucose without oxygen. In yeast, the anaerobic reactions make alcohol, while in your muscles, they make

Introduction

Ever wonder how yeast ferment barley malt into beer? Or how your muscles keep working when you're exercising so hard that they're very low on oxygen?

Both of these processes can happen thanks to alternative glucose breakdown pathways that occur when normal, oxygen-using (aerobic) cellular respiration is not possible—that is, when oxygen isn't around to act as an acceptor at the end of the electron transport chain. These fermentation pathways consist of glycolysis with some extra reactions tacked on at the end. In yeast, the extra reactions make alcohol, while in your muscles, they make lactic acid.

Fermentation is a widespread pathway, but it is not the only way to get energy from fuels anaerobically (in the absence of oxygen). Some living systems instead use an inorganic molecule other than \text {O}_2O

2

start text, O, end text, start subscript, 2, end subscript, such as sulfate, as a final electron acceptor for an electron transport chain. This process, called anaerobic cellular respiration, is performed by some bacteria and archaea.

In this article, we'll take a closer look at anaerobic cellular respiration and at the different types of fermentation.

Anaerobic cellular respiration

Anaerobic cellular respiration is similar to aerobic cellular respiration in that electrons extracted from a fuel molecule are passed through an electron transport chain, driving \text{ATP}ATPstart text, A, T, P, end text synthesis. Some organisms use sulfate (\text {SO}_4^{2-})(SO

4

2−

)left parenthesis, start text, S, O, end text, start subscript, 4, end subscript, start superscript, 2, minus, end superscript, right parenthesis as the final electron acceptor at the end ot the transport chain, while others use nitrate (\text {NO}_{3}^-)(NO 3− )left parenthesis, start text, N, O, end text, start subscript, 3, end subscript, start superscript, minus, end superscript, right parenthesis, sulfur, or one of a variety of other molecules^1

1

start superscript, 1, end superscript.

What kinds of organisms use anaerobic cellular respiration? Some prokaryotes—bacteria and archaea—that live in low-oxygen environments rely on anaerobic respiration to break down fuels. For example, some archaea called methanogens can use carbon dioxide as a terminal electron acceptor, producing methane as a by-product. Methanogens are found in soil and in the digestive systems of ruminants, a group of animals including cows and sheep.

Similarly, sulfate-reducing bacteria and Archaea use sulfate as a terminal electron acceptor, producing hydrogen sulfide (\text H_2\text S)(H2S)left parenthesis, start text, H, end text, start subscript, 2, end subscript, start text, S, end text, right parenthesis as a byproduct. The image below is an aerial photograph of coastal waters, and the green patches indicate an overgrowth of sulfate-reducing bacteria.

Aerial photograph of coastal waters with blooms of sulfate-reducing bacteria appearing as large patches of green in the water.

Aerial photograph of coastal waters with blooms of sulfate-reducing bacteria appearing as large patches of green in the water.

Fermentation

Fermentation is another anaerobic (non-oxygen-requiring) pathway for breaking down glucose, one that's performed by many types of organisms and cells. In fermentation, the only energy extraction pathway is glycolysis, with one or two extra reactions tacked on at the end.

Fermentation and cellular respiration begin the same way, with glycolysis. In fermentation, however, the pyruvate made in glycolysis does not continue through oxidation and the citric acid cycle, and the electron transport chain does not run. Because the electron transport chain isn't functional, the \text{NADH}NADHstart text, N, A, D, H, end text made in glycolysis cannot drop its electrons off there to turn back

Similar questions