Math, asked by sriram07062004, 8 months ago

(AnB) -c=(A-C) n(B-C) how can we prove it

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider,

\sf \: A\cap (B - C) \\

\sf \:  =  \: A\cap (B\cap C') \\

can be further rewritten as

\sf \:  =  \: \red{ \phi} \: \cup  \: [  A\cap (B\cap C') ]\\

can be further rewritten as

\sf \:  =  \: \red{[ (A\cap B)\cap A']} \: \cup  \: [  (A\cap B)\cap C']\\

\sf \:  =  \:  (A\cap B)\cap (A'\cup C') \\

\sf \:  =  \:  (A\cap B)\cap (A\cap C)'\\

\sf \:  =  \:  (A\cap B) - (A\cap C)\\

Hence,

\implies\sf \: \boxed{\bf \:  A\cap (B - C)  = (A\cap B) - (A\cap C) \: }\\

\rule{190pt}{2pt}

\sf \: \large Law\:used- \\

\sf \:  \phi \: \cup  \: A \:  =  \: A \\

\sf \: A - B = A\cap B' \\

\sf \: A\cap A' =  \phi \\

\sf \: (A\cap B)\cap C = A\cap (B\cap C) \\

\sf \: A\cap (B\cup C) = (A\cap B)\cup (A\cap C) \\

\sf \: (A\cup B)' = A'\cap B' \\

Similar questions