Math, asked by zuliyafire57, 1 month ago

α and β are the zeroes of polynomial x 2 + 8x + 6 then find the polynomial whose zeroes are α 2 and β 2

Answers

Answered by amansharma264
63

EXPLANATION.

α and β are the zeroes of the polynomial.

⇒ x² + 8x + 6.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = -(8)/1 = - 8.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = (6)/1 = 6.

Zeroes of the polynomial.

⇒ α² and β².

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α² + β² = (α + β)² - 2αβ.

⇒ α² + β² = (-8)² - 2(6).

⇒ α² + β² = 64 - 12.

⇒ α² + β² = 52.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ (α²) x (β²) = (αβ)² = (6)² = 36.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (52)x + (36).

⇒ x² - 52x + 36.

                                                                                                                   

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Itzheartcracer
28

Given :-

If α and β are the zeroes of polynomial x² + 8x + 6

To Find :-

Polynomial whose zeroes are α² and β²

Solution :-

On comparing the given equation with ax² + bx + c. We get

a = 1

b = 8

c = 6

Sum of zeroes = -b/a

Sum = -(8)/1

Sum = -8

Product of zeroes = c/a

Product = 6/1

Product = 6

Now

New Sum of zeroes = α² + β²

α² + β²

(α + β)²

α² + 2αβ + β²

(α + β)² - 2αβ

(-8)² - 2(6)

64 - 12

52

New Product of zeroes = α² × β²

α² × β²

(α × β)²

(6)²

36

Standard form of quadratic polynomial = x² - (α + β)x + αβ

Quadratic polynomial = x² - (52)x + (36)

Quadratic polynomial = x² - 52x + 36

\\.

Similar questions