α and β are the zeroes of the polynomial x2 – px + q, then find the value of (i) /+ /() αβ3 + βα3 (iii) α3β2 + α2 β3
Answers
Question:-
If α & β are the roots of the polynomial 3x² + 2x - 6 , then find the value of
i) α - β
ii) α² + β²
iii) α³ + β ³
iv) 1/α + 1/β
Answer:-
Given:
α & β are the roots of 3x² + 2x - 6.
On comparing the given polynomial with the standard form of a quadratic equation i.e., ax² + bx + c = 0 ;
Let,
- a = 3
- b = 2
- c = - 6
We know that,
Sum of the roots = - b/a
⟹ α + β = - 2/3 -- equation (1)
Product of the roots = c/a
⟹ αβ = - 6/3 = - 2 -- equation (2)
We have to find:
i) α - β
We know that,
(a - b)² = (a + b)² - 4ab
So,
⟹ (α - β)² = (α + β)² - 4αβ
Substituting the values from equations (1) & (2) we get,
⟹ (α - β)² = (- 2/3)² - 4( - 2)
⟹ (α - β)² = 4/9 + 8
⟹ (α - β)² = (4 + 72)/9
⟹ (α - β)² = 76/9
⟹ (α - β) = √(76/9)
⟹ (α - β) = 2√19/3
Simple Method:-
If α , β are the roots of ax² + bx + c = 0 ;
- (α - β) = √(b² - 4ac) / |a|
⟹ α - β = √2² - 4(3)( - 6) / |3|
⟹ α - β = √4 + 72 / 3
⟹ α - β = √76/3
⟹ α - β = 2√19/3
_________________________________
ii) α² + β²
We know,
a² + b² = (a + b)² - 2ab
So,
⟹ α² + β² = (α + β)² - 2αβ
⟹ α² + β² = ( - 2/3)² - 2( - 2)
⟹ α² + β² = 4/9 + 4
⟹ α² + β² = (4 + 36)/9
⟹ α² + β² = 40/9
_________________________________
iii) α³ + β³
We know,
a³ + b³ = (a + b)(a² + b² - ab)
⟹ α³ + β³ = (α + β)(α² + β² - αβ)
⟹ α³ + β³ = (- 2/3) [ 40/9 - (- 2) ]
⟹ α³ + β³ = (- 2/3) (40/9 + 2)
⟹ α³ + β³ = (- 2/3) (40 + 18) / 9
⟹ α³ + β³ = (- 2/3) (58/9)
⟹ α³ + β³ = - 116/27
_________________________________
iv) 1/α + 1/β
Taking LCM we get,
⟹ (β² + α²) / αβ
⟹ (40/9) / ( - 2)
⟹ (40/9) * ( - 1/2)
⟹ 1/α + 1/β = - 20/9.
━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀¤ Finding value of (i) α - β :
━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀⠀¤ Finding value of (ii) α² + β² :
━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀¤ Finding value of (iii) α³ + β³ :
━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀¤ Finding value of (iv) 1/α + 1/β :