Math, asked by jaykumbhar584, 9 months ago

α and β are zeroes of quadratic polynomial 4x² - x - 4 then the quadratic polynomial whose zeroes are 2α and 2β is :​

Answers

Answered by MaIeficent
10
\large\bf{\underline{\underline\red{Given:-}}}

• α and β are zeroes of quadratic polynomial 4x² - x - 4 .

\large\bf{\underline{\underline\blue{To\:Find:-}}}

• The quadratic polynomial whose zeroes are 2α and 2β .

\large\bf{\underline{\underline\green{Solution:-}}}

Given:-

Quadratic polynomial = 4x² - x - 4 .

Comparing the polynomial with ax² + bx + c

• a = 4

• b = -1

• c = -4

\implies  \rm Sum \: of \: zeroes =   \dfrac{ - b}{ \:  \: a}

\implies  \rm  \alpha  +  \beta  =   \dfrac{ - ( - 1)}{ \:  \: 4}

\implies  \rm  \alpha  +  \beta  =   \dfrac{ 1}{  4}

\implies  \rm Product \: of \: zeroes =   \dfrac{c}{ a}

\implies  \rm  \alpha    \beta  =   \dfrac{ -4}{ \:  \: 4}

\implies  \rm  \alpha    \beta  =   -1

Now;

We need to find the quadratic polynomial of zeroes 2α and 2β

Sum of zeroes = 2α + 2β

= 2(α + β)

= 2 \times  \dfrac{1}{4}

Sum\: of\:zeroes = \dfrac{1}{2}

Product of zeroes= 2α × 2β

= 2(αβ)

= 2(-1)

Product of zeroes = -2

Quadratic polynomial

= x² -(sum of zeroes)x + product of zeroes

\rm =  {x}^{2}   +  \bigg( -   \dfrac{1}{2}  \bigg)x + ( - 1)

\rm =  {x}^{2}    -   \dfrac{1}{2} x  - 1

 \rm =  2{x}^{2}    -    x  - 2

The quadratic polynomial whose zeroes are 2α and 2β is 2x² - x - 2

Similar questions