Math, asked by dps33, 11 months ago

and
Example 2 : In Fig. 6.10, ray OS stands on a line POQ. Ray OR and ray OT are
angle bisectors of Z POS and 2 SOQ, respectively. If Z POS = x, find Z ROT.
the line PO​

Answers

Answered by itsbiswaa
3

Answer:

✯✯ QUESTION ✯✯

In Fig.6.10,Ray OS stands on a line POQ . RayOR and ray OT are angle bisector of angle POS and angle SOQ, respectively . If angle POS=x, find angle ROT.

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

➥Given : -

➥To Find : -

➥Now ,

OR is angle bisector of  

➥So ,

➥Also ,

OT is bisector of  

➥Now ,

90degree is the answer

Step-by-step explanation:

Answered by Anonymous
214

\huge{\orange{\underline{\purple{\mathscr{Solution}}}}}

Ray OS stands on the line POQ.

\:\sf\red{∴}\:⠀⠀⠀⠀⠀⠀⠀⠀∆POS + ∆SOQ= 180°

\:\sf\underline\red{But}\:⠀⠀⠀⠀⠀⠀∆POS = x

\:\sf\red{∴}\: ⠀⠀⠀⠀⠀⠀⠀x + ∆SOQ =180°

\:\sf\underline\red{So\:,}\:⠀⠀⠀⠀⠀⠀∆SOQ = 180° - x

Now ray OR bisects POS , therefore ,

⠀⠀⠀⠀⠀∆ ROS =  \dfrac{1}{2} × ∆POS

⠀⠀⠀⠀⠀⠀=  \dfrac{1}{2} × x =  \dfrac{x}{2}

\:\sf\underline\red{Similarly}\:⠀⠀⠀⠀∆SOT =  \dfrac{1}{2} × ∆SOQ

⠀⠀⠀⠀⠀⠀⠀=  \dfrac{1}{2} × (180° -x )

⠀⠀⠀⠀⠀⠀= 90° -  \dfrac{x}{2}

\:\sf\underline\red{Now}\: ⠀⠀⠀∆ROT = ∆ ROS + ∆ SOT

⠀⠀⠀⠀⠀⠀ =  \dfrac{x}{2} +90° -  \dfrac{x}{2}

⠀⠀⠀⠀⠀⠀= {\purple{\boxed{\large{\bold{90°}}}}}

Similar questions