Math, asked by kiara9514, 10 months ago

and how...



don't post irrelevant answers



step by step ✔️

Attachments:

Answers

Answered by saounksh
2

I = \frac{1}{2}( ln(cos(2x))-\frac{cos²(2x)}{2})+ C

CALCULATION

I = ∫ \frac{cos(4x)-1}{cot(x)-tan(x)}dx

I = - ∫ \frac{1-cos(4x)}{\frac{cos(x)}{sin(x)}-\frac{sin(x)}{cos(x)}}dx

I = -∫ \frac{2sin²(2x)}{\frac{cos²(x)-sin²(x)}{sin(x)cos(x)}}dx

I = -∫ \frac{sin²(2x).2sin(x)cos(x)}{cos(2x)}dx

I = -∫ \frac{1 - cos²(2x)}{cos(2x)}sin(2x)dx

Substituting cos(2x) = t

⇒ - 2sin(2x)dx = dt

I = ∫ \frac{1 - t²}{t}\frac{dt}{2}

I = \frac{1}{2}∫ (\frac{1}{t}-t)dt

I = \frac{1}{2}( ln(t)-\frac{t²}{2})+ C

I = \frac{1}{2}( ln(cos(2x))-\frac{cos²(2x)}{2})+ C

Answered by Anonymous
1

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions