Physics, asked by shubhamjoshipanday, 11 months ago

and object is placed at 30 cm before a concave mirror of focal length of 20cm to get a real image what will be the distance of the image from the mirror​

Answers

Answered by kaushik05
78

 \huge \purple{ \mathfrak{solution}}

Given:

object distance (u) = -30cm

Focal length(f)= -20cm

To find :

Image distance (v)= ?

By using mirror formula :

   \boxed{ \frac{1}{f}  =  \frac{1}{v}  +  \frac{1}{u} }

Now put the given values :

 \rightarrow \:  \frac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u}  \\  \\  \rightarrow \frac{1}{v}  =  \frac{ - 1}{20}  +  \frac{1}{30}  \\  \\  \rightarrow \:  \frac{1}{v}  =  \frac{ - 3 + 2}{60}  \\  \\  \rightarrow \:  \frac{1}{v}  =  -  \frac{1}{60}  \\  \\  \rightarrow \:  v \:  =  - 60

Hence the image distance is

  \huge \green{\boxed{ \mathfrak{ - 60cm}}}


ShivamKashyap08: ☆ ☆
Answered by Anonymous
104

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

The image will be formed between c and , real and inverted , size of image is larger than object

Given :-

→object distance (u) = -30cm

→Focal length(f)= -20cm

To find :-

Image distance (v)= ?

So, now we can jse mirror formula to find the image distance .

  \huge \sf{  \frac{1}{f}  =  \frac{1}{v}  +  \frac{1}{u} }

So, now we putting thw values in formula .

 \sf{    \implies  \: \frac{1}{v}  =  \frac{1}{f}   -  \frac{1}{u} } \\  \\ \sf{    \implies \: \frac{1}{v}  =  \frac { - 1}{20}    +   \frac{1}{30} } \\  \\ \sf{    \implies  \: \frac{1}{v}  =   \frac{ - 3 + 2}{ 60} } \\  \\ \sf{    \implies  \: \frac{1}{v}  =   \frac{ - 1}{ 60} } \\  \\  \sf{ \implies \: v \:  =  - 60 \: }

Hence , the image distance is -60

Similar questions