and q ≠0 then prove that qx²-px+q=0
Answers
So, let's rationalise RHS first,
Step-by-step explanation:
\huge{\underline{\bold{Answer:}}}
Answer:
\sf x = \dfrac{ \sqrt{p + 2q} + \sqrt{p - 2q} }{ \sqrt{p + 2q} - \sqrt{p - 2q} } x=
p+2q
−
p−2q
p+2q
+
p−2q
So, let's rationalise RHS first,
\sf \frac{ \sqrt{p + 2q} + \sqrt{p - 2q} }{ \sqrt{p + 2q} - \sqrt{p - 2q} } \times \frac{ \sqrt{p + 2q} + \sqrt{p - 2q} }{ \sqrt{p + 2q} + \sqrt{p - 2q} }
p+2q
−
p−2q
p+2q
+
p−2q
×
p+2q
+
p−2q
p+2q
+
p−2q
\sf \dfrac{ (\sqrt{p + 2q} + \sqrt{p - 2q} ) {}^{2} }{ (\sqrt{p + 2q} ) {}^{2} - ( \sqrt{p - 2q}) {}^{2} }
(
p+2q
)
2
−(
p−2q
)
2
(
p+2q
+
p−2q
)
2
\sf \frac{ (\sqrt{p + 2q}) {}^{2} + ( \sqrt{p - 2q}) {}^{2} + 2(\sqrt{p + 2q})(\sqrt{p - 2q})}{ \cancel p + 2q - \cancel p + 2q}
p
+2q−
p
+2q
(
p+2q
)
2
+(
p−2q
)
2
+2(
p+2q
)(
p−2q
)
\sf \frac{p + 2q + p - 2q + 2 \sqrt{p + 2q} \times \sqrt{p - 2q} }{4q}
4q
p+2q+p−2q+2
p+2q
×
p−2q
\sf \frac{2p + 2 \sqrt{p + 2q} \times \sqrt{p - 2q}}{4q}
4q
2p+2
p+2q
×
p−2q
\begin{gathered}\sf x = \frac{2(p + \sqrt{p + 2q} \times \sqrt{p - 2q})}{2(2q)} \\ \\ \sf x = \frac{p +\sqrt{p + 2q} \times \sqrt{p - 2q}}{2q} \\ \\ \bf on \: cross \: multiplying : - \\ \\ \sf 2qx = p + \sqrt{p + 2q} \times \sqrt{p - 2q} \\ \\ \sf 2qx - p = \sqrt{p + 2q} \times \sqrt{p - 2q} \\ \\ \bf on \: squaring \: both \: sides : \\ \\ \sf (2qx - p) {}^{2} = (\sqrt{p + 2q} \times \sqrt{p - 2q}) {}^{2} \end{gathered}
x=
2(2q)
2(p+
p+2q
×
p−2q
)
x=
2q
p+
p+2q
×
p−2q
oncrossmultiplying:−
2qx=p+
p+2q
×
p−2q
2qx−p=
p+2q
×
p−2q
onsquaringbothsides:
(2qx−p)
2
=(
p+2q
×
p−2q
)
2
\begin{gathered} \sf{4q {}^{2} x {}^{2} + p {}^{2} - 4qxp= (p + 2q)(p - 2q)} \\ \\ \sf 4q {}^{2} x {}^{2} + p {}^{2} - 4qxp =p {}^{2} - 4q {}^{2} \\ \\ \sf 4q {}^{2} x {}^{2} + p {}^{2} - 4qxp - p {}^{2} + 4q {}^{2} = 0 \\ \\ \sf 4q {}^{2} x{}^{2} - 4qxp + 4q {}^{2} = 0 \\ \\ \sf 4q(qx {}^{2} - xp + q) = 0 \\ \\ \boxed{\bf qx {}^{2} - xp + q= 0}\end{gathered}
4q
2
x
2
+p
2
−4qxp=(p+2q)(p−2q)
4q
2
x
2
+p
2
−4qxp=p
2
−4q
2
4q
2
x
2
+p
2
−4qxp−p
2
+4q
2
=0
4q
2
x
2
−4qxp+4q
2
=0
4q(qx
2
−xp+q)=0
qx
2
−xp+q=0
\huge{\underline{\bold{PROVED.}}}
PROVED.