Math, asked by dashdurga97, 4 months ago

and
Q32. If
tanx + tan y = 5
tanx. tany
then value of
tan(x + y) is
(A) 10
(B) 1/10
(D) 5​

Answers

Answered by Anonymous
0

Step-by-step explanation:

x+y=

x+y= 6

x+y= 6π

x+y= 6π

x+y= 6π

x+y= 6π ⇒tan(x+y)=tan(

x+y= 6π ⇒tan(x+y)=tan( 6

x+y= 6π ⇒tan(x+y)=tan( 6π

x+y= 6π ⇒tan(x+y)=tan( 6π

x+y= 6π ⇒tan(x+y)=tan( 6π )

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tany

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany =

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany=

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)=

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany is

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x 2

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x 2 −(1−a)+a

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x 2 −(1−a)+a 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x 2 −(1−a)+a 3

x+y= 6π ⇒tan(x+y)=tan( 6π ) ⇒ 1−tanx.tanytanx+tany = 3 1 ⇒tanx+tany= 3 1 (1−tanx.tany)= 3 1 (1−a)So equation with roots tanx,tany isx 2 −(tanx+tany)x+(tanx.tany)=0⇒ 3 x 2 −(1−a)+a 3 =0

Similar questions