Math, asked by PRIYANSHUSINGH261105, 4 months ago

and y=40 (2x+3y) (2x+1)
Multiply and verify for x = 1​

Answers

Answered by Anonymous
12

Given expression:

(2x+3y) (2x+1)

We are also given that, x = 1 and y = 40.

Solution:

First we will simplify this expression: (2x+3y) (2x+1)

2x(2x+1) + 3y(2x+1) [Using distributive property]

\boxed {\sf {\blue{4x² + 2x + 6xy + 3y}}} ---> This is the simplified expression.

Now we will put the values of x and y in the expression obtained.

x = 1

y = 40

4x² + 2x + 6xy + 3y

4×(1)² + 2×1 + 6×1×40 + 3×40

4×1+2+6×40+120

4+2+240+120

366

Verification:

On substituting the value of x and y as 1 and 40 respectively in the given expression:

(2x+3y) (2x+1)

(2×1+3×40) (2×1+1)

(2+120) (2+1)

122×3

= 366

366 = 366

LHS = RHS

Hence Verified!

Final answer:

Therefore the result of the expression (2x+3y) (2x+1) is \bf \red{366} (given that x = 1 and y = 40)

Answered by CɛƖɛxtríα
92

_____________________________________

Given:

  • Equation: \sf (2x+3y)(2x+1)
  • \sf x=1
  • \sf y=40

To do:

  • Simplify the equation
  • Find its solution
  • Verify

Solution:

\normalsize{\underline{\bold{1)\: Simplifying\: the\:given\: equation:}}}

\sf\implies (2x + 3y)(2x + 1)

\sf\implies 2x(2x + 1) + 3y(2x + 1)

  • \large{\underline{\boxed{\sf{\red{{4x}^{2}  + 2x + 6xy + 3y}}}}}

\rightarrowFor simplifying, we have used "Distributive Property".

\normalsize{\underline{\bold{2)\: Finding\:its\:solution:}}}

\rightarrowInsert the given values of in place of x and y in the simplified equation.

\sf\implies{{4x}^{2}  + 2x + 6xy + 3y}

\sf\implies{4×{1}^{2}  + 2×1 + 6×1×40 + 3×40}

\sf\implies 4×1+2+6×40+3×40

\sf\implies 4+2+240+120

\sf\implies 6+360

  • \large\underline{\boxed{\sf{\red{366}}}}

\normalsize{\underline{\bold{3)\: Verification:}}}

To verify, substitute the given values of 'x' and 'y' respectively in the given equation.

\sf\implies (2x+3y)(2x+1)

\sf\implies (2×1+3×40)(2×1+1)

\sf\implies (2+120)(2+1)

\sf\implies 122×3

\sf\implies{\red{366}}

\bold{\implies L.H.S = R.H.S}

  • \large{\underline{\underline{\tt{\green{Hence,\: verified\:!}}}}}

_____________________________________

Similar questions