Physics, asked by jazz2995, 1 year ago

Angel between the vectors i-2j+k and 4i-3j-4k is

Answers

Answered by ItSdHrUvSiNgH
3

 \huge\blue{\underline{\underline{ \bf Question}}}

______________________________________

Angle between,

 \hat{i} - 2 \hat{j} +  \hat{k} \\ and \\ 4 \hat{i} - 3 \hat{j} - 4 \hat{k}

______________________________________

\huge\blue{\underline{\underline{ \bf Answer}}}

Angle between two vectors is given by =>

 \implies \cos( \Theta)  =  \frac{a.b}{ |a| .  |b|  }  \\ \\   \implies \cos( \Theta)  = \frac{ ( \hat{i} - 2 \hat{j} +  \hat{k})(4 \hat{i} - 3 \hat{j} - 4 \hat{k})}{ \sqrt{1 + 4 + 1} . \sqrt{16 + 9 + 16} }  \\ \\   \implies \cos( \Theta)  =  \frac{4 - 6 - 4}{ \sqrt{6} . \sqrt{41} }  \\ \\ \implies  \huge \boxed{ \cos( \Theta)  =  \frac{ - 6}{ \sqrt{246} } }

  • Note
  1. i.i = j. j = k. k = 1
  2. i.j = i. k = j. k = i
  3. i×i = j×j = k×k = 0
  4. i×j = k, k×i = j, j×k = i
  5. j×i = -k , i×k = -j , k×j = -i
Similar questions