Math, asked by wwwamankumargupta970, 10 months ago

angle abc =69° angle acb = 31° find angle dbc​

Answers

Answered by sanishaji30
3

Answer:

∠ABC = 69°, ∠ACB = 31°   [Given]

In ΔABC

∠ABC + ∠ACB + ∠BAC = 180°

⇒ ∠BAC  = 180° - ∠ABC - ∠ACB

⇒ ∠BAC  = 180° -  69° - 31° = 80°

∠BDC = ∠BAC  ( Angle drawn from same chord) 

∴ ∠BDC = 80°

I hope it helps you ^_^

Answered by GalacticCluster
1

Answer:

Given :

  • A circle with centre O. \angle ABC = 69° and \angle ACB = 31°.

To find :

  • \angle BDC

Proof :

\angle BAC = \angle BDC \qquad ( angle in the same segment of the circle)

In ABC,

 \\  \\  \sf \angle \: BAC +  \angle \: ABC +  \angle \: ACB = 180  {}^{ \circ}  \\  \\  \\  \sf \implies \: \sf \angle \: BAC +  69 {}^{ \circ}  +  31 {}^{ \circ}  = 180  {}^{ \circ}  \\  \\  \\  \implies \sf \: \angle \: BAC  = 180 - 100 \\  \\  \\  \implies \sf \:  \angle \: BAC = 80 {}^{ \circ}  \\  \\  \\  \large{ \boxed{ \sf{thus \:  \:  \angle \:BAC = 80 {}^{ \circ}  }}} \\  \\

Similar questions