Angle b:c = root 3:root 2 and angles are in ap find anle a
Answers
Answered by
10
As the angles A, B, C of ∆ ABC are in AP
∴ Let A = x – d, B = x, C = x + d
But A + B + C = 180° (∠ Sum prop. of ∆)
∴ x – d + x + x + d = 180°
⇒ 3x = 180° ⇒ x = 60° ∴ ∠B = 60°
Now by sine law in ∆ ABC, we have
b/sin B = c/sin C ⇒ sin B/sin C
⇒ √3/√2 = sin 60°/sin C [using b : c = √3 : √2 and ∠B = 60°]
⇒ √3/√2 = √3/2 sin C ⇒ sin C = 1/√2 = sin 45°
∴ ∠C = 45° ⇒ ∠A = 180° - (∠B + ∠C)
= 180° - (60° + 45°) = 75°
∴ Let A = x – d, B = x, C = x + d
But A + B + C = 180° (∠ Sum prop. of ∆)
∴ x – d + x + x + d = 180°
⇒ 3x = 180° ⇒ x = 60° ∴ ∠B = 60°
Now by sine law in ∆ ABC, we have
b/sin B = c/sin C ⇒ sin B/sin C
⇒ √3/√2 = sin 60°/sin C [using b : c = √3 : √2 and ∠B = 60°]
⇒ √3/√2 = √3/2 sin C ⇒ sin C = 1/√2 = sin 45°
∴ ∠C = 45° ⇒ ∠A = 180° - (∠B + ∠C)
= 180° - (60° + 45°) = 75°
Similar questions
Math,
7 months ago
Math,
7 months ago
Environmental Sciences,
1 year ago
Sociology,
1 year ago
Social Sciences,
1 year ago