Math, asked by kas454, 9 months ago

angle between base and hypotenuse is 60° and Base of right angled triangle is 8m. find the height of triangle.​

Answers

Answered by Anonymous
18

ɢɪᴠᴇɴ :-

★Base of triangle = 8m

★ Angle, ⌀ = 60°

ᴛᴏ ғɪɴᴅ:-

★ Height of the given triangle.

sᴏʟᴜᴛɪᴏɴ:-

⋆_______Some Information _________⋆

✰ tan ø = Perpendicular / Base

✰ ø =60°

✰ tan 60° =√3

✰ Base =8 m

______________⋆⋆

tan 60° = H/ 8

⟹ √3 = H/ 8

⟹ H = 8√3 m

Therefore,

height of the triangle is ☞ 8√3 m.

{\huge{\mathcal{\tt{Hope \ It \ Helps..!!!}}}}

Attachments:
Answered by Anonymous
30

Given :

  • Angle between base and hypotenuse is 60° and Base of right angled triangle is 8m.

To Find :

  • The height of triangle = ?

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(8.9,0.7){\sf{\large{8 m}}}\put(7.4,2){\sf{\large{H}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.4,1.2){\sf\large{60^{\circ}$}}\end{picture}

Procedure:

\dashrightarrow\:\sf tan \:\theta = \dfrac{Perpendicular}{Base}

\dashrightarrow\:\sf tan \:60^{\circ} = \dfrac{H}{8}

\dashrightarrow\:\sf \sqrt{3} = \dfrac{H}{8}

\dashrightarrow\:\sf H = 8\sqrt{3}

\dashrightarrow\:\sf H = 8 \times 1.73

\pink\dashrightarrow\:\pink{\sf H = 13.84\:m}

Therefore, height of the triangle is 13.84 m.

Extra Brainly knowledge :

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

Similar questions