Math, asked by kumariMuskan793, 1 day ago

Angle between the tangents drawn from point (4 5) to the ellipse x2/16+y2/25=1 is

Answers

Answered by vikkiain
0

\theta = tan^{ - 1} ( \frac{ - 5}{4} )

Step-by-step explanation:

Given, \:  \:  \: p(4,5) \:  \: and \:  \:  \frac{ {x}^{2} }{16}  +  \frac{ {y}^{2} }{25}  = 1 \\ we \:  \: know \:  \:  \boxed{m = tan \theta \:  =  \frac{dy}{dx} } \\ Now, \:  \: Differentiating \:  \:  \frac{ {x}^{2} }{16}  +  \frac{ {y}^{2} }{25}  = 1   \:  \: with  \:  \: respect \:  \:  to \:  \:  x, \\  \frac{2x}{16}  +  \frac{2y}{25} \frac{dy}{dx}   = 0 \\ \frac{2y}{25} \frac{dy}{dx} =  -  \frac{2x}{16}  \\  \frac{dy}{dx}  =  \frac{ -x}{16}  \times  \frac{25}{y}  \\ tan \theta =  \frac{ - 25x}{16y}  \\ putting \:  \: value \:  \: p(x, y) = (4, 5) \\ tan \theta =  \frac{ - 25 \times 4}{16 \times 5}  =  \frac{ - 5}{4}  \\  \theta = tan^{ - 1} ( \frac{ - 5}{4} )

Similar questions