angle of elevation of the top of a tower from a point is 30 degree. If the observer moves a distance of 20 m towards the tower to the angle of elevation increases to 15. Find the height of tower.
Answers
p><p></p><p>[tex]Answer
\bf \scriptsize{Given - A \: line \: segments \: AB \: = 6.4 \: cm}Given−AlinesegmentsAB=6.4cm
\bf \scriptsize{Required- To \: construct \: a \: perpendicular \: bisector \: CD.}Required−ToconstructaperpendicularbisectorCD.
\bf \red{Step \: Of \: construction :}StepOfconstruction:
\bf \scriptsize{Step1 .) Draw \: a \: line \: segment \: AB \: = 6.4 cm. \: }Step1.)DrawalinesegmentAB=6.4cm.
\begin{gathered} \bf \scriptsize \: {Step 2.)With \: A \: as \: centre \: and \: radius \: greater \: than \: AB \: , draw \: two \: arcs \: , one \: on \: either } \\ \bf \scriptsize { side \: of \: line \: segments \: AB.}\end{gathered}
Step2.)WithAascentreandradiusgreaterthanAB,drawtwoarcs,oneoneither
sideoflinesegmentsAB.
\begin{gathered} \bf \scriptsize{Step \: 3.)With \: centre \: B \: and \: the \: same \: radius \: as \: in \: step \: 2 draw \: two \: arcs \: , intersecting \: the \: arcs} \\ \bf \scriptsize{drawn \: in \: Step \: 2 \: at \: C \: and \: D.}\end{gathered}
Step3.)WithcentreBandthesameradiusasinstep2drawtwoarcs,intersectingthearcs
drawninStep2atCandD.
\begin{gathered} \bf \scriptsize{Step \: 4.)Join \: C \: and \: D . Line \: segment \: CD \: bisects \: AB \: at \: L.} \\ < /p > < p > < /p > < p > ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\end{gathered}
Step4.)JoinCandD.LinesegmentCDbisectsABatL.
</p><p></p><p>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━