Physics, asked by Ekene4353, 11 months ago

Angle that the a=2i+2j makes with y-axis is

Answers

Answered by Anonymous
2

Solution :

Given:

\sf \vec{A} = 2\hat{i} + 2\hat{j}

To Find:

✏ Angle of given vector with y-axis

Formula:

✏ Formula of dot product of two vectors is given by

 \star \:  \underline{ \boxed{ \bold{ \sf{ \pink{ \large{ \vec{A} { \tiny{ \bullet}} \vec{B} =  | \vec{A}|  | \vec{B}|  \cos \Theta}}}}}} \:  \star

Calculation:

✏ Let, vector B lies on y-axis

 \therefore \sf \:  \red{ \vec{B} = 1 \hat{j}} \\  \\  \leadsto  \sf \:  | \vec{A}|  =  \sqrt{ {2}^{2}  +  {2}^{2} } = 2 \sqrt{2}  \: unit \\  \\  \leadsto\sf \:  | \vec{B}|   =  \sqrt{ {1}^{2} } = 1 \: unit \\  \\  \implies \sf \: (2 \hat{i} + 2 \hat{j}) \: { \tiny{ \bullet}} \:  1 \hat{j} = (2 \sqrt{2} )(1) \cos \Theta \\  \\  \implies\sf \: (2 \times 1)( \hat{j} \times  \hat{j}) = 2 \sqrt{2} \cos \Theta \\  \\  \implies \sf \:  \cancel{2} =  \cancel{2} \sqrt{2} \cos \Theta \\  \\  \implies \sf  \:  \cos \Theta =  \dfrac{1}{ \sqrt{2} }  \\  \\  \implies \sf \:  \Theta =  { \cos}^{ - 1}  \dfrac{1}{ \sqrt{2} }  \\  \\  \implies \:  \underline{ \boxed{ \bold{ \sf{ \orange{ \large{ \Theta = 45 \degree}}}}}} \: \gray{ \bigstar}

_________________________________

  • Second method :

_________________________________

 \implies \sf \:  \tan{ \Theta} =  \dfrac{x \: component}{y \: component}  \\  \\  \implies \sf \:  \tan{ \Theta} =  \frac{2}{2}  = 1 \\  \\  \implies \:  \boxed{ \purple{ \sf{ \Theta = 45 \degree}}}

Similar questions