angled triangle or not.
ii) In AABC, if ABC=AC2+CB2, state with reason whether triangle ABC is a right
Answers
Answer:
it's a triangle .
because this is a Pythagoras theorem
Answer:
Given:
\textsf{In triangle ABC,}In triangle ABC,
\mathsf{AB^2=AC^2+BC^2}AB
2
=AC
2
+BC
2
\underline{\textsf{To find:}}
To find:
\textsf{Whether triangle ABC is right angled or not}Whether triangle ABC is right angled or not
\underline{\textsf{Solution:}}
Solution:
\underline{\textsf{Converse of Pythagoras theorem:}}
Converse of Pythagoras theorem:
\textsf{If square of one side of a triangle is equal to sum of the}If square of one side of a triangle is equal to sum of the
\textsf{squares of the other two sides, then the angle contained}squares of the other two sides, then the angle contained
\textsf{by the two sides is right angle.}by the two sides is right angle.
\textsf{Consider,}Consider,
\mathsf{AB^2=AC^2+BC^2}AB
2
=AC
2
+BC
2
\textsf{According to converse of Pythagoras theorem,}According to converse of Pythagoras theorem,
\mathsf{{\triangle}ABC}\;\textsf{is right angled}△ABCis right angled