Math, asked by syamchandyannakula, 5 months ago

Angles made with the x - axis by the two
lines drawn through the point (1, 2) and

cutting the line x+y=4 at a distance
√2÷3
from the point (1,2) are​

Answers

Answered by pratik1332
5

\boxed{\texttt{\fcolorbox{black}{yellow}{Answer:}}}

Let P≡(1,2)

Using the parametric form , the coordinates of the point at a distance of

 \sqrt{ \frac{2}{3} }

is given by

1 +  \sqrt{ \frac{2}{3} }  \cosθ</p><p></p><p> ,</p><p></p><p>2 +  \sqrt{ \frac{2}{3} }  \sinθ

This point lies on the line x+y=4

Hence,

3 +  \sqrt{ \frac{2}{3} } (\cosθ</p><p></p><p> +  \sinθ ) = 4

On squaring and simplifying, we get

 { \sin }^{2} θ</p><p></p><p> +  { \cos }^{2} θ</p><p></p><p> + 2 \:  \sinθ</p><p></p><p> \cosθ =   \frac{3}{2} </p><p></p><p>

1 +   \sin2θ</p><p></p><p> =  \frac{2}{3}

 \sin2θ</p><p></p><p> =  \frac{1}{2}

the possible value of θ are

 \frac{\pi}{12}

and

 \frac{5\pi}{12}

Similar questions