Math, asked by Sup49, 4 months ago

Angles of a quadrilateral are in the ratio 1: 2: 3: 4. Find all angles. What special name can you give to this quadrilateral and why?​

Answers

Answered by rahul42291
1

Answer:

So here the angles will be x=36∘, 2x=72∘, 3x=108∘, and 4x=144∘. So the adjacent pair of angles is 180 degrees. So this is a trapezium as the sum of the adjacent angles on the parallel sides is 180 degrees. Note: Trapezium is a kind of quadrilateral.

Answered by HA7SH
22

Step-by-step explanation:

{\Huge{\underline{\underline{\bf{\maltese Question:-}}}}}

 \mathrm{Angles\ of\ a\ quadrilateral\ are\ in\ the\ ratio\ 1:\ 2:\ 3:\ 4.\ Find\ all\ angles.\ What\ special\ name\ can\ you\ give\ to\ this\ quadrilateral\ and\ why?}

{\Large{\underline{\underline{\bf{\maltese Let's\ Answer\ Your\ Question:-}}}}}

:\Rightarrow  \mathrm{Let\ the\ measure\ angle\ be\ x,\ 2x,\ 3x,\ and\ 4x}

:\Rightarrow  \mathrm{We\ know\ that\ the\ sum\ of\ measures\ of\ all\ four\ angles\ is\ 360⁰}

:\Rightarrow \therefore  \mathrm{x\ +\ 2x\ +\ 3x\ +\ 4x\ =\ 360⁰}

:\Rightarrow  \mathrm{10x\ =\ 360⁰}

:\Rightarrow  \mathrm{x\ =\ 36⁰}

:\Rightarrow  \mathrm{2x\ =\ 2\ ×\ 36⁰\ =\ 72⁰}

:\Rightarrow  \mathrm{3x\ =\ 3\ ×\ 36⁰\ =\ 108⁰}

:\Rightarrow  \mathrm{4x\ =\ 4\ ×\ 36⁰\ =\ 144⁰}

:\Rightarrow  \mathrm{The\ measure\ of\ angles\ of\ quadilateral\ are\ 36⁰,\ 72⁰,\ 108⁰,\ and\ 144⁰.}

:\Rightarrow  \mathrm{We\ can\ see\ measure\ of\ all\ four\ angles\ are\ different.}

:\Rightarrow \therefore  \mathrm{So\ the\ given\ quadilateral\ is\ trapezium.}

{\Large{\underline{\underline{\bf{\maltese Hence,\ Solved \maltese}}}}}

Similar questions