Math, asked by 877888, 17 days ago

Angles of a quadrilateral are in the ratio 1:2:3:4. Find all angles. What special name can you give to this quadrilateral and why?​

Answers

Answered by taslimuddinahmad60
16

Answer:

Angles are 36, 72, 108, and 144.

Name of the quadrilateral is trapezium.

Step-by-step explanation:

Let's say the angles are 1x, 2x, 3x, and 4x

Then,

=> x + 2x + 3x + 4x = 360

Solving for x

=> 10x = 360

=> x = 36

The angles are :-

  • 1x = 36°
  • 2x = 72°
  • 3x = 108°
  • 4x = 144°

Hence, we can call this a trapezium since all the angles are different.

Answered by IIMASTERII
5

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 \tt{\longrightarrow {Let\ the\ measure\ angle\ be\ x,\ 2x,\ 3x,\ and\ 4x} }

 \tt{We\ know\ that\ the\ sum\ of\ measures\ of\ all\ four\ angles\ is\ 360⁰}

 \boxed{\therefore \tt{x\ +\ 2x\ +\ 3x\ +\ 4x\ =\ 360⁰}}

  \tt \green{\longrightarrow10x\ =\ 360⁰}

\tt \green{ \longrightarrow \: x\ =\ 36⁰}

\tt \green{ \longrightarrow2x\ =\ 2\ ×\ 36⁰\ =\ 72⁰}

 \tt \green{ \longrightarrow3x\ =\ 3\ ×\ 36⁰\ =\ 108⁰}

 \tt \green{ \longrightarrow4x\ =\ 4\ ×\ 36⁰\ =\ 144⁰}

\huge\boxed{\tt\therefore\red{ 114°}}

 \tt { \longrightarrow \: The\ measure\ of\ angles}

\tt{of\ quadilateral\ are\ 36⁰,\ 72⁰,\ 108⁰,\ and\ 144⁰.}

  \tt{ \longrightarrow \: We\ can\ see\ measure\ of}

\tt{all\ four\ angles\ are\ different.}

 \boxed { \tt  \:  \therefore \: So\ the\ given\ quadilateral\ is\ trapezium.}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Similar questions