Math, asked by avisitmoharana, 1 month ago

Angles of quadrilateral are /_ A = ( 3x - 5)° , /_ B= ( 8x - 15) ° , /_ C= ( 2x + 4) ° and /_ D= 90° , find the value of x.​

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
2

Given

Angles of quadrilateral are

  • ∠A = (3x - 5)°

  • ∠B = (8x - 15)°

  • ∠C = ( 2x + 4 )°

  • ∠D = 90°

__________________________

To Find

We have to find the value of x.

____________________

Concept Using

The Sum of interior angles of quadrilaterals is 360°.

  • ∠A + ∠B + ∠C + ∠D = 360°

____________________

Solution

(3x - 5)° + (8x - 15)° + ( 2x + 4 )° + 90° = 360°

Now , Opening brackets and simplifying

⇛3x - 5° + 8x - 15° + 2x + 4° + 90° = 360°

⇛13x + 74° = 360°

⇛13x = 360° - 74°

⇛13x = 286°

⇛x = 286° ÷ 13

x = 22

☛ Putting the values

⇥∠A = (3x - 5)°

⇥ (3 × 22 - 5)°

⇥(66 - 5)°

∠A = 61°

⇥∠B = (8x - 15)°

⇥(8 × 22 - 15)°

⇥(176 - 15)°

∠B = 161°

⇥∠C = ( 2x + 4 )°

⇥(22 × 2 + 4)°

⇥(44 + 4)°

∠C = 48°

∠D = 90°

____________________

Verification

The Sum of interior angles of quadrilaterals is 360°.

  • ∠A + ∠B + ∠C + ∠D = 360°

⇨61° + 161° + 48° + 90° = 360

⇨222° + 138° = 360°

⇨360° = 360°

LHS = RHS

Similar questions