Angles of quadrilateral are /_ A = ( 3x - 5)° , /_ B= ( 8x - 15) ° , /_ C= ( 2x + 4) ° and /_ D= 90° , find the value of x.
Answers
Answered by
2
Given
Angles of quadrilateral are
- ∠A = (3x - 5)°
- ∠B = (8x - 15)°
- ∠C = ( 2x + 4 )°
- ∠D = 90°
__________________________
To Find
We have to find the value of x.
____________________
Concept Using
The Sum of interior angles of quadrilaterals is 360°.
- ∠A + ∠B + ∠C + ∠D = 360°
____________________
Solution
(3x - 5)° + (8x - 15)° + ( 2x + 4 )° + 90° = 360°
Now , Opening brackets and simplifying
⇛3x - 5° + 8x - 15° + 2x + 4° + 90° = 360°
⇛13x + 74° = 360°
⇛13x = 360° - 74°
⇛13x = 286°
⇛x = 286° ÷ 13
⇛x = 22
☛ Putting the values
⇥∠A = (3x - 5)°
⇥ (3 × 22 - 5)°
⇥(66 - 5)°
⇥∠A = 61°
⇥∠B = (8x - 15)°
⇥(8 × 22 - 15)°
⇥(176 - 15)°
⇥∠B = 161°
⇥∠C = ( 2x + 4 )°
⇥(22 × 2 + 4)°
⇥(44 + 4)°
⇥∠C = 48°
⇥∠D = 90°
____________________
Verification
The Sum of interior angles of quadrilaterals is 360°.
- ∠A + ∠B + ∠C + ∠D = 360°
⇨61° + 161° + 48° + 90° = 360
⇨222° + 138° = 360°
⇨360° = 360°
LHS = RHS
Similar questions