angles of quadrilateral so are (4x) , 5 (x+2), (7x -20) and 6(x+3). find :
- the value of x
- each angle of the quadrilateral
Attachments:
Answers
Answered by
89
sum of all angles of a quadrilateral is 360
so
4x+5x+10 +7x-20+6x+18=360
22x=352
x=352/22
x=16
each angles are 64 ; 90 ; 92 and 114
so
4x+5x+10 +7x-20+6x+18=360
22x=352
x=352/22
x=16
each angles are 64 ; 90 ; 92 and 114
vaishnavi51:
tq for helping me
Answered by
46
The value of x = 16° and four angles of quadrilateral = 64°, 90°, 92° and 114°.
Step-by-step explanation:
We have,
The given four angles of quadrilateral=(4x)°, 5(x + 2)°, (7x - 20)° and 6(x + 3)°
To find, the value of x = ? and each angle of the quadrilateral = ?
We know that,
Sum of all angles of a quadrilateral = 360 °
∴ (4x)°+ 5(x + 2)° + (7x - 20)° + 6(x + 3)° = 360 °
⇒ 4 x+ 5x + 10° + 7x - 20° + 6x + 18° = 360 °
⇒ 22x + 8° = 360 °
⇒ 22x = 360 ° - 8°
⇒ 22x = 352 °
⇒ =16°
The value of x = 16°
Each angle of the quadrilateral,
∴ (4x)° = 4 × 16° = 64°,
5(x + 2)° = 5( 16° + 2)° = 5 × 18° = 90°,
(7x - 20)° = 7 × 16° - 20° = 112° - 20° = 92° and
6(x + 3)° = 6( 16° + 3)° = 6 × 19° = 114°
Hence, the value of x = 16° and four angles of quadrilateral = 64°, 90°, 92° and 114°.
Similar questions