Math, asked by niyatiarora001727, 11 months ago

angles of triangle are (x-40), (x-20) and 1/2 (x-10) find the value of x​

Answers

Answered by gautamkumar118
2

Answer:

I hope you like it and mark brainliest answer.

Attachments:
Answered by Anonymous
26

\huge\underline\mathfrak\green{Solution:}

Since (x-40°), (x-20°) and \bf\left(\frac{x}{2}-10\right) are the angles of a ∆, therefore

\bf{(x-40°)+(x-20°)+}\bf\left(\frac{x}{2}-10°\right)=180°

\implies\bf{x-40°+x-20°+}\bf\left(\frac{x}{2}\right)-10°=180°

\implies\bf{2x+}\bf\left(\frac{x}{2}\right)-70°=180°

\implies\bf\frac{5}{2}x=180°+70°

\implies\bf\frac{5}{2}x=250°

\implies\bf x=250°\times\frac{2}{5}

\hookrightarrow\bf{x=50°\times2}

\hookrightarrow\bf\underline{x=100°}

\underline\mathfrak\pink{Hence,\:the\:angles\:of\:the\:triangles\:are:}

\bf{(x-40°)=(100-40)^°=60°}

\bf{(x-20°)=(100-20)^°=80°}

\bf\left(\frac{x}{2}-10°\right)=\left(\frac{100}{2}-10°\right)=(50°-10)^°=40°

Similar questions