Math, asked by rahmanriyadh286, 5 months ago

Anjali brows ₹ 19,000 at 6 1/2 % for two years . At the end of 2 years she pays ₹ 15000 and a gold ring to the money lender . What is the value of the gold ring

Answers

Answered by telex
392

Question :-

Anjali brows ₹ 19,000 at 6 1/2 % for two years . At the end of 2 years she pays ₹ 15000 and a gold ring to the money lender . What is the value of the gold ring.

____________________

Solution :-

Given Information :-

  •  1.) \:  \:  \:  \bf{principal = Rs. \: 19000}
  • 2.) \:  \:  \:  \bf{rate = 6 \frac{1}{2} \%}
  • 3.) \:  \:  \:  \bf{time = 2 \: years}
  • 4.) \:  \:  \:  \bf{money \: repaid  = Rs. \: 15000}

Calculation :-

 \boxed{ \bf\red{ \underline{ \underline{formula \: used :- }}}}

   \red \maltese \: \small\boxed  { \bf{simple \: interest =  \frac {principal \times rate \times time}{100} }}

Putting the Given Information,

Putting the Given Information, We get,

 \red \implies  \small \bf{simple \: interest =  \frac{19000 \times 2 \times 2}{100 \times 13} }

 \red \implies  \small \bf{simple \: interest =  \frac{190 \cancel{0} \cancel{0} \times 2 \times 2}{1 \cancel{0} \cancel{0} \times 13}   }

 \red \implies  \bf{simple \: interest =  \frac{760}{13} }

   \small\red \implies  \small \bf{simple \: interest = Rs. \: 58.46}

 \small \red \therefore    \small\boxed{ \small  \bf{amount = principal + simple \: interest}}

 \red \therefore \bf{amount = 19000 + 58.46} \\ \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \: \: \: \:\: \:\: \: \bf{=Rs.19058.46}

Now as given in the question above,

  •  \bf{money \: returned = Rs. \: 15000}

Now, to find the value of the gold ring, we will subtract the "money returned" from the "amount" calculated above,

  \purple \maltese \: \small \bf{value \: of \: ring = amount - money \: returned}

 \small \bf{</em><em>\</em><em>:</em><em> </em><em>\</em><em>:</em><em> </em><em>\: </em><em>\: \:</em><em>value \: of \: ring = 19058.46 - 15000}

  \red\therefore  \bf{value \: of \: ring = </em><em>R</em><em>s. \: 4058.46}

____________________

Final Answer :-

{ \huge \orange \dag} \boxed  {\bf \purple{value \: of \: ring = </u><u>R</u><u>s. \: 4058.46}} \huge  \orange \dag

____________________

Answered by Anonymous
11

The Value of the Gold ring is 6470.

Given

  • Principal = ₹ 19000
  • Rate = 6½% = 13/2%
  • Time = 2 Years

Explanation:

FORMULA

 \maltese {\boxed{\underline{\sf{ Simple \ Interest = \dfrac{P \times R \times T}{100} }}}} \\

Where as:

  • P = Principal
  • R = Rate
  • T = Time

Now, We can find Simple Interest after two years as:-

 \colon\implies{\sf{ SI = \dfrac{PRT}{100} }} \\ \\ \\ \colon\implies{\sf{ SI = \dfrac{19000 \times \left( \dfrac{13}{2} \right) \times 2 }{100} }} \\ \\ \\ \colon\implies{\sf{ SI = \dfrac{19000 \times 13 \times \cancel{2} }{100 \times \cancel{2} } }} \\ \\ \\ \colon\implies{\sf{ SI = \dfrac{190\ \cancel{00}  \times 13}{1 \cancel{00} } }} \\ \\ \\ \colon\implies{\sf{ SI = 190 \times 13 }} \\ \\ \\ \colon\implies{\sf{ SI = 2470 }} \\

So, Simple Interest after 2 Years will be 2470 .

Now,

Total Amount after completing 2 Years will be :-

 \circ{\boxed{\underline{\sf{ Amount = Principal + Interest }}}} \\ \\ \colon\implies{\sf{ Amount = 19000 + 2470 }} \\ \\ \\ \colon\implies{\sf{ Amount = 21470 }} \\

Since, Total Amount after two Years will be 21470

So, We can Subtract amount that she pays after two years :-

 \colon\implies{\sf{ 21470 - 15000 }} \\ \\ \colon\implies{\boxed{\mathfrak\pink{ 6470 }}} \\

Hence,

  • The Value of the Gold ring is 6470
Similar questions