Math, asked by Mangat503, 1 year ago

Ankita travels 14 km to her home partly by rickshaw and partly by bus. She takes half an hour if she travels 2 km by rickshaw, and the remaining distance by bus. On the other hand, if she travels 4 km by rickshaw and the remaining distance by bus, she takes 9 minutes longer. Find the speed of the rickshaw and of the bus

NCERT Class X
Mathematics - Exemplar Problems

Chapter _PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Answers

Answered by Abhinav5579
500
I have added a attachment in that whole answer is written.
Attachments:
Answered by mindfulmaisel
132

Speed of Rickshaw is \bold{=10\ \mathrm{km} / \mathrm{h}}

Speed of Bus \bold{=40\ \mathrm{km} / \mathrm{h}}.

Case1:

Total distance = 14km

Total time, T = 30min =\frac{1}{2} h

By Rickshaw                                

Distance covered = 2Km                                    

Time taken =t_{1}                                          

Speed =\frac{\text {Distance}}{\text {Tim} e}=\frac{2}{t_{1}}

By Bus  

Distance covered = 12Km

Time taken  =\frac{1}{2}-t_{1}=\frac{1-2 t_{1}}{2 t_{1}}

Speed =\frac{\text {Distance}}{\text {Time}}=\frac{24 \mathrm{t}_{1}}{1-2 \mathrm{t}_{1}}

Case 2 :

Total distance = 14km

Total time, t_{2}=39 \min =\frac{13}{20} h

By Rickshaw                                  

Distance covered = 4Km                                    

Time taken =t_{2}                                      

Speed =\frac{\text {Distance}}{\text {Time}}=\frac{4}{t_{2}}    

In both case, Speed is equal.

Comparing Speed of rickshaw                      

\frac{2}{t_{1}}=\frac{4}{t_{2}} \Rightarrow t_{2}=2 t_{1}                  

By Bus

Distance covered = 10Km                                    

Time taken =\frac{13}{20}-t_{2}=\frac{13-20 t_{2}}{20}

Speed =\frac{\text {Distance}}{\text {Tim} e}=\frac{200}{13-20 t_{2}}  

Comparing speed of bus

\frac{24 t_{1}}{1-2 t_{1}}=\frac{200}{13-20 t_{2}}

3\left(13-20 t_{2}\right)=25\left(1-2 t_{1}\right)

39-60 t_{2}=25-50 t_{1}

39-25=60 t 2-50 t_{1}

14=60 t_{2}-50 t 1

120 t_{1}-50 t_{1}=14

70 t_{1}=14                                                          

Substitute t_{2}=2 t_{1}                

t_{1}=\frac{1}{5}

Speed of Rickshaw is =\frac{2}{t_{1}}=10 \mathrm{km} / \mathrm{h}

Speed of Bus =\frac{24}{1-2 t_{1}}=\frac{24}{1-\frac{2}{5}}=24 \times \frac{5}{3}=40 \mathrm{km} / \mathrm{h}.

Similar questions