Math, asked by Anonymous, 4 months ago

Anmol ᗷᖇO ᗯᕼEᖇE ᗩᖇE YOᑌ?¿​

Answers

Answered by Anonymous
1

Answer:

don't know sry

good night

Step-by-step explanation:

Yep! the question of IIT Main.

Answer:

→ 1 .

Step-by-step explanation:

Given :

→ \alphaα and \betaβ are the roots of equation : x² - x - 1 = 0 .

Then,

\begin{gathered}\sf { \alpha }^{2} - \alpha - 1 = 0. \\ \\ \implies \sf { \alpha }^{2} - 1 = \alpha .\end{gathered}

α

2

−α−1=0.

⟹α

2

−1=α.

\begin{gathered}\sf { \beta }^{2} - \beta - 1 = 0. \\ \\ \implies \sf { \beta }^{2} - 1 = \beta .\end{gathered}

β

2

−β−1=0.

⟹β

2

−1=β.

\begin{gathered}\sf \because \frac{a_{2012} - a_{2010}}{a_{2011}} \\ \\ \sf = \frac{ \frac{( { \alpha }^{2012} - { \beta }^{2012}) }{ \alpha - \beta } - \frac{( { \alpha }^{2010} - { \beta }^{2010} ) }{ \alpha - \beta } }{ \frac{ { \alpha }^{2011} - { \beta }^{2011} }{ \alpha - \beta } } . \\ \\ \sf = \frac{ \frac{( { \alpha }^{2012} - { \beta }^{2012} - { \alpha }^{2010} - { \beta }^{2010}) }{ \cancel{ (\alpha - \beta )}} }{ \frac{ { \alpha }^{2011} - { \beta }^{2011} }{ \cancel{( \alpha - \beta )}} } . \\ \\ \sf = \frac{ ( { \alpha }^{2012} - { \beta }^{2012} - { \alpha }^{2010} - { \beta }^{2010}) }{ { \alpha }^{2011} - { \beta }^{2011} }. \\ \\ \sf = \frac{ { \alpha }^{2010}( { \alpha }^{2} - 1) - { \beta }^{2010} ( { \beta }^{2} - 1) }{ { \alpha }^{2011} - { \beta }^{2011} } . \\ \\ \sf = \frac{ { \alpha }^{2010}( \alpha ) - { \beta }^{2010}( \beta ) }{ { \alpha }^{2011} - { \beta }^{2011} } . \\ \\ \sf = \frac{ { \alpha }^{2011} - { \beta }^{2011} }{ { \alpha }^{2011} - { \beta }^{2011} } . \\ \\ \huge{ \pink{ \boxed{ \tt = 1.}}}\end{gathered}

a

2011

a

2012

−a

2010

=

α−β

α

2011

−β

2011

α−β

2012

−β

2012

)

α−β

2010

−β

2010

)

.

=

(α−β)

α

2011

−β

2011

(α−β)

2012

−β

2012

−α

2010

−β

2010

)

.

=

α

2011

−β

2011

2012

−β

2012

−α

2010

−β

2010

)

.

=

α

2011

−β

2011

α

2010

2

−1)−β

2010

2

−1)

.

=

α

2011

−β

2011

α

2010

(α)−β

2010

(β)

.

=

α

2011

−β

2011

α

2011

−β

2011

.

=1.

Similar questions