Math, asked by vijayswamy409, 3 months ago

annually?
19 At what rate per cent per annum will 640 amount to * 774.40 in 2 years when
compounded annually?
20. In how
when compounded​

Answers

Answered by muskandivya1990
0

Answer:

Here is your answer,

Principal (P) = Rs. 640

Rate of interest (R) = R%

Time (n) = 2 years

Amount = Rs. 774.40

\begin{gathered}Amount = P {(1 + \frac{R}{100} )}^{n} \\ \\ = > 774.40 = 640 {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{77440}{100} = 640 {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{7744}{10} = 640 {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{7744}{10} \div 640 = {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{7744}{10} \times \frac{1}{640} = {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{7744}{6400} = {(1 + \frac{R}{100} )}^{2} \\ \\ (7744 = {88}^{2} \: \: and \: \: 6400 = {80}^{2} ) \\ \\ = > ({ \frac{88}{80} )}^{2} = {(1 + \frac{R}{100} )}^{2} \\ \\ = > \frac{88}{80 } = 1 + \frac{R}{100} \\ \\ = > \frac{88}{80} - 1 \: \: = \: \: \frac{R}{100} \\ \\ = > \frac{88 - 80}{80} = \frac{R}{100} \\ \\ = > \frac{8}{80} = \frac{R}{100} \\ \\ = > \frac{8}{80} \times 100 = R \\ \\ = > \frac{800}{80} = R \\ \\ = > 10 = R \\ \end{gathered}

Amount=P(1+

100

R

)

n

=>774.40=640(1+

100

R

)

2

=>

100

77440

=640(1+

100

R

)

2

=>

10

7744

=640(1+

100

R

)

2

=>

10

7744

÷640=(1+

100

R

)

2

=>

10

7744

×

640

1

=(1+

100

R

)

2

=>

6400

7744

=(1+

100

R

)

2

(7744=88

2

and6400=80

2

)

=>(

80

88

)

2

=(1+

100

R

)

2

=>

80

88

=1+

100

R

=>

80

88

−1=

100

R

=>

80

88−80

=

100

R

=>

80

8

=

100

R

=>

80

8

×100=R

=>

80

800

=R

=>10=R

Similar questions