Math, asked by aanya49531, 9 months ago

♥️♥️♥️ Annyeong haseyo Army's ♥️♥️♥️
ANSWERS PLZ!!!
NO SPAMS!!!!
PURPLE YOU GUYS!!!​

Attachments:

Answers

Answered by Anonymous
7

Solution:-

Given:-

=> ∠Q = 90⁰

=> YZ = h ( we assume height of the light house be h )

=> AB = x ( given)

Now take BYZ

∠ = 2a

 \rm \:  \tan 2a =  \dfrac{p}{b}  =  \dfrac{h}{BZ}

So now

 \rm \: BZ =  \frac{h}{ \tan2a}  \:  \:  \:  \:  \:  \: ........(i)

In YZC

 \rm \:  \tan3a =  \dfrac{h}{ZC}

 \rm \: ZC =  \frac{h}{ \tan3a }  \:  \:  \:  \:  \:  \:  \: .....(ii)

In AYZ

 \rm \:  \tan  a  = \dfrac{h}{ZA}

Now we can write

ZA = ZC + CB + BA

 \rm \:  \tan  a  = \dfrac{h}{ZC + CB + BA }

Now value of

BA = x ( given)

\rm \:  \tan  a  = \dfrac{h}{ZC + CB + x }

 \rm \: ZC + CB + x  =  \frac{h}{ \tan a }

Now we can write as

ZB = ZC + CB

=> CB = ZB - ZC

\rm \: ZC +ZB - ZC  + x  =  \frac{h}{ \tan a }

\rm \:  \cancel{ZC }+ZB -  \cancel{ZC}  + x  =  \frac{h}{ \tan a }

We get

\rm \: ZB   + x  =  \frac{h}{ \tan a }

 \rm \:  \to \: ZB  =  \dfrac{h}{ \tan2a}

Now

\rm \:  \dfrac{h}{ \tan2a}  + x  =  \frac{h}{ \tan a }

Taking lcm

\rm \:  \dfrac{h + x \tan2a }{ \tan2a}   =  \frac{h}{ \tan a }

Using cross multiplication

 \rm \tan \: a(x \tan2a + h) = h \tan2a

 \rm \: \to x \tan a \:  \tan2a + h \tan \: a = h \tan2a

\rm \: \to x \tan a \:  \tan2a   = h \tan2a -h \tan \: a

 \rm  \to\: x \tan a \:  \tan2a   = h (\tan2a - \tan \: a )

 \to \rm \: h =  \frac{x \tan \: a \tan2a  }{ \tan2a -  \tan a }

Attachments:
Answered by Vanshika4721
1

Hii

Refer to the attachment ✌️

Attachments:
Similar questions