Math, asked by Anonymous, 7 months ago

Annyeong mates ❤

Kindly,Can someone please do me the two sums ?
m
i) 14/x+y + 3/x-y = 5

21/x+y - 1/x-y = 2

ii) x+a/a = y+b/b

ax- by = a²- b²

Kindly please do me the sums .... I'll be really grateful .... ❤❤​

Answers

Answered by King412
44

\bold\red\star\mathrm\green{Question:-}

1. \:  \:  \frac{14}{x + y}   +  \frac{3}{x - y}  = 5 \:  \:  \\ sum \\  \frac{21}{x + y}  -  \frac{  1}{x - y}  = 2

\red\star\mathrm\green{Solution:-}

\mathrm{Here,}

 \frac{14}{x + y}  +  \frac{3}{x - y}  = 5....... \fbox \blue{equation 1}  \\

 \frac{21}{x + y}   -  \frac{1}{x - y}  = 2........ \fbox \blue{equation2} \\

\mathrm{Let,\frac{1}{x+y}=U\:and \:\frac{1}{x-y}\:put}

\mathrm{these\:values\:in\:eqn\:1\:and\:eqn\:2}

14u + 3v = 5........ \fbox  \blue{ equation \: 3}

21u - v = 2............ \fbox \blue{equation \: 4}

\mathrm{from\: equation\:3\:we\:get,}

14u + 3v = 5

➟ \: 14u = 5 - 3v

➟ \: u =  \frac{5 - 3v}{14} .......... \fbox \blue{equation \: 5} \\

\mathrm{put\:the\: value\:of\:u\:in\: equation\:2}

21u - v = 2

➟ \: 21 \times ( \frac{5 - 3v}{14} ) - v = 2 \\

➟ \: 105 -  \frac{63v}{14}  - v = 2 \\

➟ \: 105 - 63v - 14v = 14 \times 2

➟ \: ( - 77v) = 28 - 105

➟ \: ( - 77v) = ( - 77)

➟ \: v =  \frac{ - 77}{ - 77 }  \\

➟  \fbox  \pink{\: v = 1}

\mathrm{put\:the\: value\:of\:v\:in\: equation\:3}

u =  \frac{5 - 3v}{14}  \\

⇒ \: u = 5 - 3 \times  \frac{1}{14}

⇒ \:  \frac{5 - 3}{14}  \\

⇒ \:  \frac{2}{14}  \\

⇒ \:  \frac{1}{7}  \\

\mathrm{Therefore,}

 \frac{1}{(x + y)}  = u \\

⇒ \frac{1}{x + y}  =  \frac{1}{7}  \\

⇒ \: (x + y) = 7..... (1)

\mathrm{and,}

 \frac{1}{x - y}  = v \\

➟ \:  \frac{1}{x - y}  = 1 \\

➟ \: x - y = 1......(2)

\mathrm{from\: equation\:(1)\:we\:get,}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x + y = 7

⇒ \: x = 7 - y.......(3)

\mathrm{put\:the\: value\:of\:x\:in\: equation\:1}

 \:  \:  \:  \:  \: x - y = 1

⇒ \: 7 - y - y = 1

⇒ \:  - 2y =  \frac{1}{7}  \\

⇒ \:  - 2y =  - 6

⇒ \fbox\red{y = 3}

\mathrm{put\:the\: value\:of\:y\:in\: equation\:3}

 \fbox\red{x = 4}

_____________________________________

Similar questions