Math, asked by gaursantoshi519, 9 months ago

ans ans ans plz plz plz​

Attachments:

Answers

Answered by sandy1816
1

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by waqarsd
0

Answer:

 \bold{ \large{ \frac{252}{65} }}

Step-by-step explanation:

 \frac{ {2}^{m + 4}  -  {2}^{m - 2} }{ {2}^{m - 4} +  {2}^{m + 2}  }  \\  \\  =  \frac{ {2}^{m}. {2}^{4}   -  {2}^{m} . {2}^{ - 2} }{ {2}^{m}. {2}^{ - 4}  +  {2}^{m} . {2}^{2}  }  \\  \\  =  \frac{ {2}^{m} ( {2}^{4}  -  {2}^{ - 2} )}{ {2}^{m}( {2}^{ - 4}  +  {2}^{2}  ) }  \\  \\  =  \frac{ {2}^{4}  -  \frac{1}{ {2}^{2} } }{ \frac{1}{ {2}^{4} } +  {2}^{2}  }  \\  \\  =  \frac{ \frac{ {2}^{6}  - 1}{ {2}^{2} } }{ \frac{1 +  {2}^{6} }{ {2}^{4} } }  \\  \\  =  \frac{ {2}^{2}( {2}^{6}  - 1) }{ {2}^{6}  + 1}  \\  \\  =  \frac{4(64 - 1)}{64 + 1}  \\  \\  =  \frac{4(63)}{65}  \\  \\  =  \frac{252}{65}  \\  \\

HOPE IT HELPS

Similar questions