Ans both questions asap
Attachments:
Answers
Answered by
2
Your answer is here I hope correct answer
Attachments:
Answered by
15
(1)
Given a + b + c = 15 and ab + bc + ca = 15.
We need to find (a + b)^3 + (b + c)^3 + (a + c)^3 - 3(a + b)(b + c)(a + c).
= > a^3 + b^3 + 3ab(a + b) + b^3 + c^3 + 3bc(b + c) + a^3 + c^3 + 3ac(a + c) - (3a^2b + 6abc + 3a^2c + 3ac^2 + 3ab^2 + 3b^2c + 3bc^2)
= > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + a^3 + c^3 + 3a^2c + 3ac^2 - 3a^2b - 6abc - 3a^2c - 3ac^2 - 3ab^2 - 3b^2c - 3bc^2
= > 2a^3 + 2b^3 + 2c^3 - 6abc
= > 2(a^3 + b^3 + c^3 - 3abc)
= > 2(a + b + c)[(a^2 + b^2 + c^2) - (ab + bc + ca)]
= > 2(5)[(a^2 + b^2 + c^2) - (15)]
We know that a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)
On substituting we get,
= > 2(5)[(a + b + c)^2 - 2(ab + bc + ca) - 15]
= > 10[(5)^2 - 2(15) - 15]
= > 10(25 - 30 - 15)
= > 10(-20)
= > -200.
The value of (a + b)^3 + (b + c)^3 + (a + c)^3 - 3(a + b)(b + c)(c + a) = -200
(2)
Given Equation is a^12y^4 - a^4y^12
= > a^4y^4(a^8 - y^8)
= > a^4y^4((a^4)^2 - (y^4)^2)
= > a^4y^4((a^4 + y^4)(a^4 - y^4))
= > a^4y^4((a^4 + y^4)(a^2)^2 - (y^2)^2))
= > a^4y^4(a^4 + y^4)(a^2 + y^2)(a^2 - y^2)
= > a^4y^4(a^4 + y^4)(a^2 + y^2)(a + y)(a - y)
Hope this helps!
Given a + b + c = 15 and ab + bc + ca = 15.
We need to find (a + b)^3 + (b + c)^3 + (a + c)^3 - 3(a + b)(b + c)(a + c).
= > a^3 + b^3 + 3ab(a + b) + b^3 + c^3 + 3bc(b + c) + a^3 + c^3 + 3ac(a + c) - (3a^2b + 6abc + 3a^2c + 3ac^2 + 3ab^2 + 3b^2c + 3bc^2)
= > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + a^3 + c^3 + 3a^2c + 3ac^2 - 3a^2b - 6abc - 3a^2c - 3ac^2 - 3ab^2 - 3b^2c - 3bc^2
= > 2a^3 + 2b^3 + 2c^3 - 6abc
= > 2(a^3 + b^3 + c^3 - 3abc)
= > 2(a + b + c)[(a^2 + b^2 + c^2) - (ab + bc + ca)]
= > 2(5)[(a^2 + b^2 + c^2) - (15)]
We know that a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)
On substituting we get,
= > 2(5)[(a + b + c)^2 - 2(ab + bc + ca) - 15]
= > 10[(5)^2 - 2(15) - 15]
= > 10(25 - 30 - 15)
= > 10(-20)
= > -200.
The value of (a + b)^3 + (b + c)^3 + (a + c)^3 - 3(a + b)(b + c)(c + a) = -200
(2)
Given Equation is a^12y^4 - a^4y^12
= > a^4y^4(a^8 - y^8)
= > a^4y^4((a^4)^2 - (y^4)^2)
= > a^4y^4((a^4 + y^4)(a^4 - y^4))
= > a^4y^4((a^4 + y^4)(a^2)^2 - (y^2)^2))
= > a^4y^4(a^4 + y^4)(a^2 + y^2)(a^2 - y^2)
= > a^4y^4(a^4 + y^4)(a^2 + y^2)(a + y)(a - y)
Hope this helps!
siddhartharao77:
:-)
Similar questions